
DISTRIBUTED SYSTEMS
CS6421

FAULT TOLERANCE SYSTEMS
Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

FINAL PROJECT
• Design Document

• Proposed Design
• UML Diagrams describing

architecture and communication
• Work timeline with breakdown by

team member

• Timeline
• Milestone 0: Form a Team - 10/12
• Milestone 1: Select a Topic - 10/19
• Milestone 2: Literature Survey - 10/29
• Milestone 3: Design Document - 11/5
• Milestone 4: Final Presentation - 12/14

Prof. Tim Wood & Prof. Roozbeh Haghnazar

https://gwdistsys20.github.io/project/

Questions?

LAST TIME… THIS TIME…
• Distributed Coordination

• Distributed Locking
• Elections
• State Machine Replication
• Blockchain

• Fault Tolerance
• Types of Failures
• Two Generals Problem
• Fault Tolerance Algorithms
• Centralized FT: Raft/Paxos
• Distributed FT: Blockchain

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Next Time: Replication and Consistency Properties

DISTSYS CHALLENGES
• Heterogeneity
• Openness
• Security
• Failure Handling
• Concurrency
• Quality of Service
• Scalability
• Transparency

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Any questions about
these? You will need
to relate your project
to them and they will

be on the exam!

BASIC CONCEPTS

• Being fault tolerant is strongly related to what are called dependable
systems

• Dependability is a term that covers a number of useful requirements for
distributed systems including the following
• Availability
• Reliability
• Safety
• Maintainability

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DIFFERENT TYPES OF FAILURES
Type of failure Description of server’s behavior
Crash failure Halts, but is working correctly until it halts
Omission failure

Receive omission
Send omission

Fails to respond to incoming requests
Fails to receive incoming messages
Fails to send messages

Timing failure Response lies outside a specified time interval
Response failure

Value failure
State-transition failure

Response is incorrect
The value of the response is wrong
Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary times

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DIFFERENT TYPES OF FAILURES
• What type of failure can be the most problematic one?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

The failures that you can not detect it…
The system thinks that everything works well!!!

Arbitrary failure

TWO GENERALS PROBLEM

General Sun Tzu General Washington

????

Two generals are preparing to attack a city
• They will only succeed if both attack simultaneously

How can they coordinate their attack?
• Any messengers sent out might get captured!

“Lossy network”

TWO GENERALS PROBLEM

General Sun Tzu General Washington

????

Impossible to guarantee agreement in lossy network!
• So usually we will need to assume that network will eventually transmit,

or loss can be detected

PROPERTIES
• Asynchrony: networks can have unbounded delay
• Safety: all nodes agree on the state of the system

• nothing bad should happen
• Liveness: progress is made on incoming requests

• something good should happen
• Fault Tolerance: at least one node can fail

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROPERTIES
• Asynchrony: networks can have unbounded delay
• Safety: all nodes agree on the state of the system

• nothing bad should happen
• Liveness: progress is made on incoming requests

• something good should happen
• Fault Tolerance: at least one node can fail

Prof. Tim Wood & Prof. Roozbeh Haghnazar

FLP Impossibility Theorem: in an asynchronous network, you can
only get 2 out of 3 properties

SLEEPY GENERALS PROBLEM
• Our general are tired, but messengers can’t die!
• Need 2 generals to be awake and attack for success

• If at most f generals can fall asleep at a time, how many general do we need?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Central command Attack!

*

* I made up this name

SLEEPY GENERALS PROBLEM
• Our general are tired, but messengers can’t die!
• Need 2 generals to be awake and attack for success

• If at most f generals can fall asleep at a time, how many general do we need?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Central command Attack!

*

* I made up this name

G1 G2 G3

Need f+2 generals
since we need at least
2 to be awake

BUREAUCRATIC GENERALS PROBLEM
• Our general are tired, but messengers can’t die!
• Need 1 general to be awake and attack for success, f can fail
• Need to ensure that all paperwork is filled correctly!

• Need complete history of commands to attack (stateful system)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

*

* I made up this name too

Central command Attack?

BUREAUCRATIC GENERALS PROBLEM
• Our general are tired, but messengers can’t die!
• Need 1 general to be awake and attack for success, f can fail
• Need to ensure that all paperwork is filled correctly!

• Need complete history of commands to attack (stateful system)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

*

* I made up this name too

Central command Attack?

G1 G2 G3

Same problem as State
Machine Replication! We
need 2f+1 so that we can
maintain a log reliably

TRAITOROUS GENERALS PROBLEM
• One of our generals is a traitor!
• How to make majority of generals agree to attack?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

*

* I made up this name too

Central command Attack?

TRAITOROUS GENERALS PROBLEM
• One of our generals is a traitor!
• How to make majority of generals agree to attack?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

*

* I made up this name too

Central command Attack? Need more than f+1 replicas!
Can’t have a trusted primary anymore!
Replicas need to talk to each other to
reach agreement on the decision
Vote and take the majority?

REACHING AGREEMENT
• The assault will only succeed if at least 2 armies attack at the same time

• I vote we should… 1 = attack, 0 = retreat!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A

C

B

Replica Receives Action

A: 1

B: 0

C: 1

REACHING AGREEMENT
• The assault will only succeed if at least 2 armies attack at the same time

• I vote we should… 1 = attack, 0 = retreat!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A

C

B

Replica Receives Action

A: 1

B: 1

C: 0

REACHING AGREEMENT
• The assault will only succeed if at least 2 armies attack at the same time

• I vote we should… 1 = attack, 0 = retreat!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A

C

B

Replica Receives Action

A: 1

B: 0

C: ???

BYZANTINE FAULT
• Is a condition of a computer system, particularly distributed computing

systems, where components may fail and there is imperfect information on
whether a component has failed

• Further, a component can fail in a malicious way, i.e., at the worst possible
time and in the worst possible way

• Related terms: interactive consistency, source congruency, error
avalanche, Byzantine agreement problem, Byzantine generals problem,
and Byzantine failure

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BYZANTINE GENERALS
PROBLEM

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BYZANTINE GENERALS SOLVED*!

• Need more replicas to reach
consensus

• Requires 3f+1 replicas to tolerate f
byzantine faults

• Step 1: Send your plan to everyone
• Step 2: Send learned plans to

everyone
• Step 3: Detect conflicts and use

majority

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A

C

B

x y

D
z

Replica Receives Majority

A
A: (1,0,1,1)
B: (1,0,0,1)
C: (1,1,1,1)
D: (1,0,1,1)

A: 1
B: 1
C: 1
D: 1

B
A: (1,0,1,1)
B: (1,0,0,1)
C: (0,0,0,0)
D: (1,0,1,1)

A: 1
B: 1
C: 0
D: 1

PROBLEM SUMMARY
• Two Generals Problem

• If network can arbitrarily lose messages, then it is impossible to guarantee two (or
more) nodes can reach agreement

• Sleepy Generals Problem
• If f nodes can fail, you need ______ replicas to guarantee x correct responses

from a stateless system (typically x=1)
• Bureaucratic Generals Problem

• If f nodes can fail, you need ________ replicas to guarantee a correct response
from a stateful system

• Byzantine Generals Problem
• If f nodes can be arbitrarily malicious, you need _______ replicas to guarantee a

correct response (stateful or stateless)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROBLEM SUMMARY
• Two Generals Problem

• If network can arbitrarily lose messages, then it is impossible to guarantee two (or
more) nodes can reach agreement

• Sleepy Generals Problem
• If f nodes can fail, you need f+x replicas to guarantee x correct responses from a
stateless system (typically x=1)

• Bureaucratic Generals Problem
• If f nodes can fail, you need 2f+1 replicas to guarantee a correct response from

a stateful system
• Byzantine Generals Problem

• If f nodes can be arbitrarily malicious, you need 3f+1 replicas to guarantee a
correct response (stateful or stateless)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PBFT, Zyzzyva, Blockchain

Paxos, Raft

PAXOS AND RAFT
• Goal: Achieve state machine replication for crash fault tolerance (non-

byzantine, stateful, reliable network)

• Paxos: Lamport ’90, published ’98 (interesting history)
• Consensus algorithm presented in a paper pretending to describe how a fictitious ancient

greek civilization wrote laws
• Used by Google Chubby, Apache Zookeeper, etc

• Raft: Ongaro and Ousterhout ’14
• An “Understandable Consensus Algorithm”. Described as a set of Remote Procedure Calls

(RPCs) that need to be implemented, but still provides strong guarantees
• Dozens of implementations, used in many real products

• Both provide fault tolerance and safety, but are not guaranteed to
terminate (no liveness)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RAFT – KEY IDEAS FOR SMR
• Leader election: Elections periodically occur in case the primary fails
• Terms: Help track avoid inconsistent state after recovery
• Ordered Logs: All incoming requests pass through leader to be ordered

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Following slides were adapted from slides by
Diego Ongaro and John Ousterhout

SERVER STATES
• At any given time, each server is either:

• Leader: handles all client interactions, log replication, sends heartbeats
• At most 1 viable leader at a time

• Follower: completely passive (issues no RPCs, responds to incoming RPCs)
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

start
timeout,
start election

receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current server

or higher term

“step
down”

• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

TERMS

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

• Respond to RPCs from candidates and leaders.
• Convert to candidate if election timeout elapses without

either:
• Receiving valid AppendEntries RPC, or
• Granting vote to candidate

Followers

• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:
• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step

down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Candidates

Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to 0

on first boot)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries

Persistent State

term term when entry was received by leader
index position of entry in the log
command command for state machine

Log Entry

Invoked by candidates to gather votes.

Arguments:
candidateId candidate requesting vote
term candidate's term
lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm ← term

(step down if leader or candidate)
2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC
Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leader's term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat)
commitIndex last entry known to be committed

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm ← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft Protocol Summary

• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

• Step down if currentTerm changes

Leaders

• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers, retry until either:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

ELECTION BASICS

LET’S RUN AN ELECTION!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Leader:

• Sends <Hello X> as
heartbeat for term
X every 5 seconds

Followers:

• If no heartbeat in 10 seconds,
become a Candidate

• If Receive <Elect ID TERM>
• Reply <VOTE ID> to first

candidate you hear
• Wait 10 seconds, if no

winner, become
Candidate

Candidate:

• Send <Elect ID>
• ID is my ID

• Send <VOTE ID> to vote for
yourself

• Wait for VOTE messages
• If got majority then send

<WIN ID>
• If no winner, wait 5-10

seconds and become
Candidate

I need 4 volunteers!

• Safety: allow at most one winner per term
• Each server gives out only one vote per term (persist on disk)
• Two different candidates can’t accumulate majorities in same

term

• Liveness: some candidate should eventually win
• Choose election timeouts randomly in [T, 2T]
• One server usually times out and wins election before others wake

up
• Works well if T >> broadcast time but not guaranteed!

ELECTIONS, CONT’D

Servers

Voted for
candidate
A

B can’t also
get majority

LOG STRUCTURE
• Logs: Store a change to the system

state, a term number and a log
index.

• A log is committed by the leader
once a majority of the nodes in the
system have stored a copy of the
entry.

• Recovery and changes: Failed
nodes or newly joining nodes can
be brought up to date by
synchronizing log

Prof. Tim Wood & Prof. Roozbeh Haghnazar

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers
• Once new entry committed:

• Leader passes command to its state machine, returns result to client
• Leader notifies followers of committed entries in subsequent AppendEntries RPCs
• Followers pass committed commands to their state machines

• Crashed/slow followers?
• Leader retries RPCs until they succeed

• Performance is optimal in common case:
• One successful RPC to any majority of servers

NORMAL OPERATION

High level of coherency between logs:
• If log entries on different servers have same index and term:

• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries are also
committed

LOG CONSISTENCY

1
add

1 2 3 4 5 6
3
jmp

1
add

1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
add

1
ret

2
mov

ROLLBACK
• A failed leader may cause some nodes to have uncommitted logs
• When new electing a new leader, pick the one with the largest log!
• Roll back logs that weren’t committed

• Logs can get into strange states if
nodes fail/reconnect

• But if a majority of nodes hold a log
we can treat it as committed and it
will never be rolled back

Prof. Tim Wood & Prof. Roozbeh Haghnazar

1 2 3 4 5 6 7 8 log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

1. Leader election: uses randomness to resolve quickly
2. Normal operation: Leader orders requests, commit with majority
3. Safety and consistency: Client only gets response if committed
4. Rollback: Uncommitted logs can be removed if a leader fails

Guarantees consistent responses to client and no loss of state using 2f+1 nodes

Used by consistent data stores like etcd

RAFT SUMMARY

