
Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

DISTRIBUTED
COORDINATION

(MUTUAL EXCLUSION, CONSENSUS)

SURVEY FEEDBACK
• Breadth vs Depth
• Example Use Cases
• Project Difficulty
• Using cloud trial version – hybrid + on premise VMs
• Programming Language - Go

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SCHEDULE
• Remaining Topics
• Midterm
• Final Project

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THIS WEEK: DISTRIBUTED COORDINATION

• Distributed Locking
• Consensus
• Elections
• State Machine Replication
• Blockchain

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHY LOCK?
• Locks let us protect a shared

resource
• A database, values in

shared memory, files on a
shared file system, throttle
control on a drone, etc

• How to manage a lock in a
distributed environment?

• How do locks limit
scalability?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Exec.
Process1

$500

Database Exec.
Process2

READ balance READ balance$500 $500

Add $100 Add $200$600 $700

$600

$700

CENTRALIZED APPROACH
• Simplest approach: put one node in charge
• Other nodes ask coordinator for each lock

• Block until they are granted the lock
• Send release message when done

• Coordinator can decide
what order to grant lock

• Do we get:
• Mutual exclusion?
• Progress?
• Resilience to failures?
• Balanced load?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

C

A

B

Lo
ck

Gr
an
t

Lock
Lock
Queue
B
C

wants lock wants lock

DISTRIBUTED APPROACH
• Use Lamport Clocks to order lock requests across nodes
• Send Lock message with ++clock

• Wait for OKs from all nodes
• When receiving Lock msg:

• Update clock following Lamport’s rules
• Send OK if not interested
• If I want the lock:

• Send OK if request's clock is smaller than own
• Else, put request in queue

• When done with a lock:
• Send OK to anybody in queue

Prof. Tim Wood & Prof. Roozbeh Haghnazar

C
15

B
5

5
Lo

ck

A
3

5 Lock

C
16

B
5

OK
B

A
16

OK B

DISTRIBUTED APPROACH
• Use Lamport Clocks to order lock requests across nodes
• Send Lock message with ++clock

• Wait for OKs from all nodes
• When receiving Lock msg:

• Update clock following Lamport’s rules
• Send OK if not interested
• If I want the lock:

• Send OK if request's clock is smaller than own
• Else, put request in queue

• When done with a lock:
• Send OK to anybody in queue

Prof. Tim Wood & Prof. Roozbeh Haghnazar

C
15

B
5

5
Lo

ck

15 Lock

A
3

15 Lock

5 Lock

CB

A

DISTRIBUTED APPROACH
• Use Lamport Clocks to order lock requests across nodes
• Send Lock message with ++clock

• Wait for OKs from all nodes
• When receiving Lock msg:

• Update clock following Lamport’s rules
• Send OK if not interested
• If I want the lock:

• Send OK if request's clock is smaller than own
• Else, put request in queue

• When done with a lock:
• Send OK to anybody in queue

Prof. Tim Wood & Prof. Roozbeh Haghnazar

C
15

B
5

5
Lo

ck

15 Lock

A
3

15 Lock

5 Lock

C
16

B
16

OK
B OK C

A
16

OK B

Queue
C 15

waiting for
OK from B...

COMPARISON
• Messages per lock acquire and release

• Centralized:
• Distributed:

• Delay before entry
• Centralized:
• Distributed:

• Problems
• Centralized:
• Distributed:

Prof. Tim Wood & Prof. Roozbeh Haghnazar

COMPARISON
• Messages per lock acquire and release

• Centralized: 2+1=3
• Distributed: 2(n-1)

• Delay before entry
• Centralized: 2
• Distributed: 2(n-1) in parallel

• Problems
• Centralized: Coordinator crashes
• Distributed: anybody crashes

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Is the distributed
approach better in

any way?

DISTRIBUTED SYSTEMS ARE HARD
• Going from centralized to distributed can be..

• Slower
• If everyone needs to do more work

• More error prone
• 10 nodes are 10x more likely to have a failure than one

• Much more complicated
• If you need a complex protocol
• If nodes need to know about all others

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Often we need more than just
a way to lock a resource!

WHAT IS THE MEANING OF CONSENSUS

• Consensus is defined by Merriam-Webster as,
• general agreement,
• group solidarity of belief or sentiment.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHY CONSENSUS?
When you sent a request to a server it answers you easily

Prof. Tim Wood & Prof. Roozbeh Haghnazar

What are the challenges?
• If server fails, there is no backup
• If the number of requests increase
dramatically the server won’t be
able to respond

WHY CONSENSUS?
• Symmetric :- Any of the multiple

servers can respond to the client
and all the other servers are
supposed to sync up with the server
that responded to the client’s
request, and

• Asymmetric :- Only the elected
leader server can respond to the
client. All other servers then sync up
with the leader server.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHY CONSENSUS?
While this creates a system that is devoid of corruption from a single source, it
still creates a major problem.

• How are any decisions made?
• How does anything get done?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CONSENSUS OBJECTIVES
• Therefore, objectives of a consensus mechanism are:

• Agreement seeking: A consensus mechanism should bring about as much
agreement from the group as possible.

• Collaborative: All the participants should aim to work together to achieve a result
that puts the best interest of the group first.

• Cooperative: All the participants shouldn’t put their own interests first and work as a
team more than individuals.

• Egalitarian: A group trying to achieve consensus should be as egalitarian as possible.
What this basically means that each and every vote has equal weight. One person’s
vote can’t be more important than another’s.

• Inclusive: As many people as possible should be involved in the consensus process. It
shouldn’t be like normal voting where people don’t really feel like voting because
they believe that their vote won’t have any weight in the long run.

• Participatory: The consensus mechanism should be such that everyone should
actively participate in the the overall process.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED ARCHITECTURES
• Purely distributed / decentralized architectures are difficult to run correctly and

efficiently (decentralized locking was pretty bad!)

• Can we mix the two?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4 P2

P3 P1

P4 P2

P3 P1

Decentralized Centralized

ELECTIONS
• Appoint a central coordinator

• But allow them to be replaced in a safe, distributed way

• Must be able to handle
simultaneous elections
• Reach a consistent result

• Who should win?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P7 P2

P3 P1

P8

P6

BULLY ALGORITHM
• The biggest (ID) wins
• Any process P can initiate an election
• P sends Election messages to all

process with higher Ids and awaits OK
messages

• If it receives an OK, it drops out and
waits for an I won

• If a process receives an Election msg,
it returns an OK...

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

Election!

BULLY ALGORITHM
• The biggest (ID) wins
• Any process P can initiate an election
• P sends Election messages to all

process with higher Ids and awaits OK
messages

• If it receives an OK, it drops out and
waits for an I won

• If a process receives an Election msg,
it returns an OK...

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7 OK

OK

BULLY ALGORITHM
• The biggest (ID) wins
• Any process P can initiate an election
• P sends Election messages to all process with higher Ids

and awaits OK messages
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK

and starts another election
• If no OK messages, P becomes leader

and sends I won to all process with
lower Ids

• If a process receives a I won, it treats
sender as the leader

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

I W
O

N!!!

El
ec
tio
n!

RING ALGORITHM
• Any other ideas?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

RING ALGORITHM
• Initiator sends an Election message

around the ring
• Add your ID to the message
• When Initiator receives message

again, it announces the winner

• What happens if multiple elections
occur at the same time?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

Elect
<1>

Elect
<1,2>

Elect
<1,2,3>

Elect
<1,2,3>

RING ALGORITHM
• Initiator sends an Election message

around the ring
• Add your ID to the message
• When Initiator receives message

again, it announces the winner

• What happens if multiple elections
occur at the same time?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

Elect
<1>

Elect
<1,2>

Elect
<1,2,3>

Elect
<1,2,3>

Elect
<1,2,3,6>

Elect
<1,2,3,6,8>

COMPARISON
• Number of messages sent to elect a leader:

• Bully Algorithm
• Worst case: lowest ID node initiates election

• Triggers n-1 elections at every other node = O(n^2) messages
• Best case: Immediate election after n-2 messages

• Ring Algorithm
• Always 2(n-1) messages
• Around the ring, then notify all

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ELECTIONS + CENTRALIZED LOCKING
• Elect a leader
• Let them make all the decisions about locks

• What kinds of failures
can we handle?
• Leader/non-leader?
• Locked/unlocked?
• During election?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P4

P2

P3

P1P8

P6

P5

P7

Elect
P8

Lock

This can be the basis for consensus-
based distributed systems!

CHUBBY: GOOGLE’S LOCK SERVICE
• Google services are composed of many thousands of nodes
• Need a way to coordinate data and access to shared

resources!
• Used by Google File System, BigTable, etc

• Chubby: lock service for loosely coupled distributed systems
• Focuses on availability and reliability (not performance)
• Scales to ~10,000 servers per Chubby Cell

• See paper at OSDI 2006 by Mike Burrows for full details!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

time since last fail-over 18 days
fail-over duration 14s
active clients (direct) 22k
additional proxied clients 32k
files open 12k
naming-related 60%

client-is-caching-file entries 230k
distinct files cached 24k
names negatively cached 32k
exclusive locks 1k
shared locks 0
stored directories 8k
ephemeral 0.1%

stored files 22k
0-1k bytes 90%
1k-10k bytes 10%
> 10k bytes 0.2%
naming-related 46%
mirrored ACLs & config info 27%
GFS and Bigtable meta-data 11%
ephemeral 3%

RPC rate 1-2k/s
KeepAlive 93%
GetStat 2%
Open 1%
CreateSession 1%
GetContentsAndStat 0.4%
SetContents 680ppm
Acquire 31ppm

STATE MACHINE REPLICATION (SMR)
• We can think of an application as a state machine

• A program is just data that is updated based on operations -> state

• Consensus means that all distributed nodes should be in the same state!
• If a node fails, it should not disrupt the system
• When a node recovers it should be able to “catch up”

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Primary Backup

DISTRIBUTED VIDEO EDITING SMR
• Sometimes data is big!
• Replicate the operation to be

performed, not the data!

• Treat like a state machine
• Incoming requests just perform some

operation on that data
• If all replicas perform same operations,

they will end in the same state

• If Primary fails, switch to Backup

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Primary

Backup

Client

trimVideo(v1, 1sec)

v1.mp4 10gb

trimVideo(v1, 1sec)

v1.mp4 10gb

HASH TABLE SMR
• SMR creates a replicated log

of actions to be performed
• E.g., updates to the value

stored by a key
• Primary orders incoming

requests to form the log
• Actions must be deterministic
• We can keep adding more

backup replicas to improve
fault tolerance

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Primary

Backup

C-1
set(x=3)

Hash Table x=

set(x=3)
set(x=99)
inc(x)

Hash Table x=

C-2
inc(x)

C-3

set(x=99)
Log

Log

SMR FAILURES?
• What to do on a failure?

• How many failures can we
handle?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Primary

Backup

C-1
set(x=3)

Hash Table x=

set(x=3)
set(x=99)
inc(x)

Hash Table x=

C-2
inc(x)

C-3

set(x=99)
Log

Log

HANDLING FAILURES
• F = number of nodes which can crash at one time
• # of nodes needed must depend on f!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

1: Primary

2: Backup
Client

f=1, f+1=2
replicas

What failure scenarios
can happen?

Log

Log

HANDLING FAILURES
• F = number of nodes which can crash at one time
• # of nodes needed must depend on f!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

1: Primary

2: Backup
Client

f=1, f+1
replicas

Log

Log 1: Primary

2: Backup

f=1, f+2 = 3
replicas

Log

Log

3: Backup
Log

Can’t resync state if failure
“flip flops” between nodes!

Fixed?

HANDLING FAILURES
• F = number of nodes which can crash at one time
• # of nodes needed must depend on f!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Client

1: Primary

2: Backup
Log

Log

3: Backup
Log

Fixed for f=2?

1: Primary

2: Backup

3: Backup

f=2, f+2 = 4 replicas

4: Backup

f=1, f+2 = 3
replicas

HANDLING FAILURES
• F = number of nodes which can crash at one time
• # of nodes needed must depend on f!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Client

1: Primary

2: Backup
Log

Log

3: Backup
Log

Can’t resync state if failure
“flip flops” between 2 nodes! Fixed for f=2? No!

1: Primary

2: Backup

3: Backup

f=2, f+2 = 4 replicas

4: Backup

f=1, f+2 = 3
replicas

HANDLING FAILURES
• F = number of nodes which can crash at one time
• # of nodes needed must depend on f!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Client

Can’t resync state if failure
“flip flops” between 2 nodes!

Use 2f+1
replicas!

Insight: Always
need a majority
of nodes to stay

alive!

1: Primary

2: Backup

3: Backup

f=2, f+2 replicas

4: Backup

f=2, 2f+1 = 5 replicas

Primary

Backup

Backup

Backup

Backup

STATE MACHINE REPLICATION OVERVIEW

• Provides a generic fault tolerance mechanism
• Application just needs to have well defined operations and a way to avoid non-

determinism
• Primary orders requests into log
• Backups execute log in order
• Log allows out of date replicas to recover
• Need 2f+1 replicas to tolerate f failures

• But how do we pick who should be primary…?
• Use an election algorithm!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Optional HW 3:
Implement the

Election algorithm
used by the Raft SMR

protocol

CASE STUDY
• Two important challenges in BlockChain

• How are any decisions made?
• How does anything get done?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED LEDGER TECH

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DIFFERENT TYPES OF DLT
• Blockchain
• Hashgraph
• DAG
• Holochain
• Tangle
• Radix (Tempo)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

HASHGRAPH
• It’s so fast – 250000 transaction per

second (Scalability characteristics
in Distributed Systems)

• Being Time-Based and using Gossip
protocol for consensus reduces the
process and math complexity.

• In the level of security it is
evaluating in the banking system
level and it means it is a Byzantine
Fault Tolerance system.

• Controlled Network (Consensus is
easier)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Hashgraph Data Structure

TANGLE (IOTA)
• IOTA is an open-source distributed

ledger and cryptocurrency
designed for the Internet of things.

• Uses DAG to store transactions on its
ledger, motivated by a potentially
higher scalability over blockchain
based distributed ledgers for nano-
Transactions between IOT devices.

• There are categories of participants,
• Transaction creators
• Transaction verifiers

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BLOCKCHAIN
• Unofficial definition: A blockchain is

an unchangeable and sequence of
records and transactions which is
called BLOCK

• The blocks connects to each other
with Hash Codes

• Each block contains an index, time
stamp, list of transactions, evidence,
and last block hash (which
guarantees the unchangeability of
the chain)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

HOW DOES IT WORK? EX. BITCOIN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CONSENSUS IN BLOCKCHAIN
• A consensus mechanism enables the blockchain network to attain reliability

and build a level of trust between different nodes, while ensuring security in
the environment.
• Proof of Work (PoW)
• Proof of Stake (PoS)
• Delegated Proof of Stake (DPoS)
• Leased Proof of Stake (LPoS)
• Direct Acyclic Graph (DAG)
• Byzantine Fault Tolerance (BFT)
• Practical Byzantine Fault Tolerance (PBFT)
• Delegated Byzantine Fault Tolerance (DBFT)
• Proof of Capacity (PoC)
• Etc.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

