
DISTRIBUTED SYSTEMS
CS6421

ADVANCED RESOURCE
MANAGEMENT

Prof. Tim Wood and Prof. Roozbeh Haghnazar

Prof. Tim Wood & Prof. Roozbeh Haghnazar

FINAL PROJECT

• Groups of 3-4 students
• Research-focused: Reimplement or

extend a research paper
• Implementation-focused:

Implement a simplified version of a
real distributed system

• Course website has sample ideas
• But don’t feel limited by them!
• You don’t have to use go!

• Timeline
• Milestone 0: Form a Team - 10/12
• Milestone 1: Select a Topic - 10/19
• Milestone 2: Literature Survey - 10/29
• Milestone 3: Design Document - 11/5
• Milestone 4: Final Presentation - 12/14

Prof. Tim Wood & Prof. Roozbeh Haghnazar

https://gwdistsys20.github.io/project/

THIS WEEK…

• Case studies
• Map reduce
• DevOps

• Resource Optimization
• Np-Hard problems
• Many-Objective Optimization Problems

• Migration
• Code
• Processes
• VMs

• Final Project

Prof. Tim Wood & Prof. Roozbeh Haghnazar

The future of
distributed
systems…

CASE STUDY: DEV OPS
• Dev Ops combines application development

and deployment and operations into a single
management process

• Allows companies to more quickly update and
deploy applications
• Integrates the roles of dev and ops
• Potentially could just break things faster…

• Load Balancers have become a tool for Dev
Ops to handle:
• Service discovery
• Health checking
• Load balancing
• Release management
• …

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DEV OPS LB
• Kubernetes consists of physical or virtual

machines—called nodes—that together form
a cluster.

• Within the cluster, Kubernetes deploys pods.
• Each pod wraps a container (or more than

one container) and represents a service that
runs in Kubernetes. Pods can be created and
destroyed as needed.

• A service is an abstraction that allows you to
connect to pods in a container network
without needing to know a pod’s location (i.e.
which node is it running on?) or to be
concerned about a pod’s lifecycle.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A Kubernetes cluster

DEV OPS LB

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DEV OPS LB

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DEV OPS LB FOR DEPLOYMENT
STRATEGY

• Load Balancer is just a flexible way to
distribute requests

• Distribution policy doesn’t need to be
based on resources!

• Recreate: Version A is terminated then version B is
rolled out.

• Ramped (also known as rolling-update or
incremental): Version B is slowly rolled out and
replacing version A.

• Blue/Green: Version B is released alongside version
A, then the traffic is switched to version B.

• Canary: Version B is released to a subset of users,
then proceed to a full rollout.

• A/B testing: Version B is released to a subset of users
under specific condition.

• Shadow: Version B receives real-world traffic
alongside version A and doesn’t impact the response.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Flexible Dispatcher

1 2 3
4

RECREATE DEPLOYMENT

• Pros:
• Easy to setup.
• Application state entirely renewed.

• Cons:
• High impact on the user, expect

downtime that depends on both
shutdown and boot duration of the
application.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RAMPED
• When an instance of pool B is deployed and its service

would be ready, one instance from pool A would be shut
down.

• Depending on the system taking care of the ramped
deployment, you can tweak the following parameters to
increase the deployment time:
• Parallelism, max batch size: Number of concurrent

instances to roll out.
• Max surge: How many instances to add in addition of

the current amount.
• Max unavailable: Number of unavailable instances

during the rolling update procedure.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BLUE/GREEN
• The blue/green deployment strategy differs from a

ramped deployment, version B (green) is deployed
alongside version A (blue) with exactly the same amount
of instances. After testing that the new version meets all
the requirements the traffic is switched from version A to
version B at the load balancer level.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CANARY

• A canary deployment consists of
gradually shifting production traffic
from version A to version B. Usually the
traffic is split based on weight.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A/B TESTING
• A/B testing deployments consists of routing

a subset of users to a new functionality
under specific conditions. It is usually a
technique for making business decisions
based on statistics, rather than a
deployment strategy.

• Here is a list of conditions that can be used
to distribute traffic amongst the versions:
• By browser cookie
• Query parameters
• Geolocalisation
• Technology support: browser version, screen size,

operating system, etc.
• Language

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SHADOW
• A shadow deployment consists of releasing version B

alongside version A, fork version A’s incoming requests
and send them to version B as well without impacting
production traffic.

• This is particularly useful to test production load on a new
feature. A rollout of the application is triggered when
stability and performance meet the requirements.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Can you give me one critical and challenging
example?

For example, given a shopping cart
platform, if you want to shadow test the

payment service you can end-up having
customers paying twice for their order.

SCHEDULING IN MAP REDUCE

• Researchers have considered many factors when designing big data
scheduling algorithms:

• What types of factors might we care about for MR scheduling?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SCHEDULING IN MAP REDUCE

• Researchers have considered many factors when designing big data
scheduling algorithms:
• Resource Efficiency
• Data Locality
• Deadlines
• Hardware and Task Heterogeneity
• Nature of jobs (dependencies, discreet or continues problem space)
• Energy consumption
• Latency of short tasks vs throughput of big tasks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BASIC MAP REDUCE TASK
SCHEDULING

• FIFO - Assigns resources to jobs based on arrival time.
• Fully complete one job before starting the next

• Fair - Assigns resources to jobs so that all jobs get an equal share of resources over time
• Splits up cluster to run multiple jobs simultaneously
• Jobs are grouped into pools (e.g., all jobs from one user are in the same pool)
• Fairness is provided across pools; jobs within a pool can be FIFO or Fair

• Capacity - Assigns resources to jobs based on its organization’s capacity
• Each organization contributes resources to the cluster, guaranteeing its minimum share
• If an organization is not using all resources, others can use them in a fair manner
• Supports priorities, security ACLs, and resource requirements (only RAM)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

YARN MAP REDUCE TASK
SCHEDULING

• Hadoop Yarn is a framework, which
provides a management solution for
big data in distributed environments.

• Provides support for:
• multi-tenant environment
• cluster utilization
• high scalability
• implementation of security controls

• Yarn consists of two main components
which are:
• Resource Manager
• Application master

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CORONA

• Corona is an extension of the MapReduce framework from Facebook
• It provides high scalability and cluster utilization for small tasks.
• This extension was designed to overcome some of the important Facebook

challenges, such as:
• Scalability
• Low latency for small jobs (pull-model)
• Resource requirements
• Dynamic software updates

• Introduces more scalable job tracking and scheduling components

Prof. Tim Wood & Prof. Roozbeh Haghnazar

More info: https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920/

APACHE MESOS

• Cluster manager to offer effective
heterogeneous resources isolation and
allocation for distributed applications
• Originally developed at UC Berkeley,

extended at Twitter/AirBnB/others
• Defines an abstraction of computing

resources (CPU, storage, network,
memory, and file system)

• Supports customizable schedulers that
match requests from applications to
cluster resources
• Not MapReduce/Hadoop specific

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RESOURCE SCHEDULING
FRAMEWORKS

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Features MapReduce default
[21]

Yarn [22] Mesos [23] Corona [24]

Resources Request based Request based Offer based Push based
Scheduling Memory Memory Memory/CPU Memory/CPU/Disk
Cluster utilization Low High High High
Fairness No Yes Yes Yes
Job latency High Low Low Low
Scalability Medium High High High
Computation model Job/task based Cluster based Cluster based Slot based
Language Java Java C++ –
Platform Apache Hadoop Apache Hadoop Cross-platform Cross-platform
Open source Yes Yes Yes Yes
Developer ASF ASF ASF Facebook

From MapReduce scheduling algorithms: a review
https://link-springer-com.proxygw.wrlc.org/article/10.1007/s11227-018-2719-5

https://link-springer-com.proxygw.wrlc.org/article/10.1007/s11227-018-2719-5
https://link-springer-com.proxygw.wrlc.org/article/10.1007/s11227-018-2719-5
https://link-springer-com.proxygw.wrlc.org/article/10.1007/s11227-018-2719-5
https://link-springer-com.proxygw.wrlc.org/article/10.1007/s11227-018-2719-5

TAXONOMY OF MAPREDUCE
SCHEDULING

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A taxonomy helps us structure our comparisons of different categories of MapReduce Schdulers

MAP REDUCE SCHEDULING

• Continues to evolve over time as needs change
• Scale of MR clusters
• Diversity of users and workloads
• Size of data to process
• Hardware accelerators

• Might be a good area for a Final Project!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ADVANCED RESOURCE MANAGEMENT
ALGORITHMS

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROBLEM DEFINITIONS

• O(1) – constant-time
• O(log!(𝑛)) – logarithmic-time
• O(𝑛) – linear-time

• O(𝑛!) – quadratic-time

• O(𝑛") – polynomial-time

• O(𝑘#) – exponential-time

• O(𝑛!) – factorial-time

Prof. Tim Wood & Prof. Roozbeh Haghnazar

POLYNOMIAL ALGORITHMS

• 𝑇 𝑛 = 𝐶 ∗ 𝑛" where 𝐶 > 0 and 𝑘 > 0 where 𝐶 , 𝑘 are constant and 𝑛 is input
size

• In general, for polynomial-time algorithms 𝑘 is expected to be less than 𝑛.
• Many algorithms complete in polynomial time:

• All basic mathematical operations; addition, subtraction, division, multiplication
• Testing for primacy
• Hash-table lookup, string operations, sorting problems
• Shortest Path Algorithms; Djikstra, Bellman-Ford, Floyd-Warshall
• Linear and Binary Search Algorithms for a given set of numbers

Prof. Tim Wood & Prof. Roozbeh Haghnazar

NP ALGORITHMS

• Cannot be solved in polynomial time. However, they can be verified (or
certified) in polynomial time. (verification can be done by Turing machine)

• We expect these algorithms to have an exponential complexity, which we’ll
define as:

• 𝑇 𝑛 = 𝐶# ∗ 𝑘$!∗& where𝐶# > 0, 𝐶! > 0 and 𝑘 > 0 where𝐶#, 𝐶!, 𝑘 are constant
and 𝑛 is input size

• complexity is 𝑂 𝑘& for some k and their results can be verified in polynomial
time.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Some examples?

• Salesman Problem
• Integer Factorization
• Graph Isomorphism

NP-COMPLETE ALGORITHMS

• What makes them different from other NP problems is a useful distinction
called completeness.
• Traveling Salesman
• Knapsack
• Graph Coloring

Prof. Tim Wood & Prof. Roozbeh Haghnazar

NP-HARD
ALGORITHMS
• Non-deterministic

Polynomial-time hard
• Most complex problems in

computer science.
• They are not only hard to solve but

are hard to verify as well.
• K-means Clustering
• Traveling Salesman Problem,
• Graph Coloring
• maximum clique problem

• These algorithms have a property
similar to ones in NP-Complete –
they can all be reduced to any
problem in NP

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Do you want US$1 million prize?
• Prove P=NP or P≠ NP
https://www.claymath.org/millennium-problems/p-vs-np-problem

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

https://www.claymath.org/millennium-problems/p-vs-np-problem
https://en.wikipedia.org/wiki/Millennium_Prize_Problems

MANY OBJECTIVE OPTIMIZATION PROBLEM

• Many objective problems are the problems that have some objectives
which should be satisfied by the solutions.

𝑓𝑖𝑛𝑑 𝑥 ∈ 𝜙: 𝑓 𝑥 ≤ 𝑓 𝑦 , ∀ 𝑦 ∈ 𝜙

min
"
𝑓(𝑥) ∈ 𝑅, 𝑥 ∈ 𝜙

𝑓: 𝑋 ⊂ 𝑅# → 𝑌 ⊂ 𝑅

𝑋 = 𝑥 = 𝑥$… 𝑥# , 𝑥% ∈ 𝐷%

𝜙 = :
𝑔% 𝑥 ≤ 0
ℎ& 𝑥 = 0
𝑥 ∈ 𝑋

FINDING THE PARETO FRONT

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PLACEMENT AS AN OPTIMIZATION
PROBLEM

• 𝑓: 𝑋 ⊂ 𝑅> → 𝑌 ⊂ 𝑅
• 𝑋 = {𝑋!: 𝑉𝑀1, 𝑋": 𝑉𝑀2, 𝑋#: 𝑉𝑀3}
• 𝑌 = {𝐹!: 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐹": 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛}
• Constrains: CPU, RAM, Memory

Prof. Tim Wood & Prof. Roozbeh Haghnazar

𝐹$

𝐹'

A solution

Design Space Objective Space

𝑋$

𝑋'

𝑋(

𝑎 = 𝑥!, 𝑥", 𝑥#

𝑎 = 𝐹!, 𝐹"

𝐹

PLACEMENT AS AN OPTIMIZATION
PROBLEM

• For example we can see solutions like this when we aim to find the best
placement of our VMs among 𝑉𝑀#. . 𝑉𝑀#':
• 𝑎! = 𝑉𝑀!, 𝑉𝑀$, 𝑉𝑀% à 30%, 900𝑊
• 𝑎" = 𝑉𝑀!, 𝑉𝑀#, 𝑉𝑀& à 70%, 1100𝑊
• 𝑎# = 𝑉𝑀", 𝑉𝑀', 𝑉𝑀! à 50%, 950𝑊
• 𝑎(= 𝑉𝑀", 𝑉𝑀', 𝑉𝑀! à 85%, 2000𝑊
• …

Prof. Tim Wood & Prof. Roozbeh Haghnazar

𝑋$

𝑋'

𝑋(

𝐹$

𝐹'

Pareto Front

𝐹

Optimum
Solutions

MULTI CRITERIA DECISION MAKING

• Choose the best option among the
alternatives

• Strategies
• Pair-wise Comparison

• AHP, ANP, ELECTRE...
• Reference Distance

• VIKOR, TOPSIS, ….

Crierion
1

Crierion
2

Crierion
3

Crierion
4

Alternative
1

X11 X12 X13 X14

Alternative
2

X21 X22 X23 X24

Alternative
3

X31 X32 X33 X34

Alternative
4

X41 X42 X43 X44f1

f2
Prof. Tim Wood & Prof. Roozbeh Haghnazar

MCDM
Start

Normalize

Find the ideal best
and worst points

Distance from
best S

Distance from
best R

Vikor Value Q

Rank Altenatives
based in Q

END

f1

f2

• For example: VIKOR is one of
the MCDM methods which:
• The complexity of the

algorithm is low
• Selection is based on the

distance to the best point

f1

f2

PLACEMENT AS A DECISION
MAKING PROBLEM

Prof. Tim Wood & Prof. Roozbeh Haghnazar

𝐹$

𝐹'

Pareto Front

Optimum Solutions

𝑎'

𝑎(

𝑎)

Crierion1 Crierion2 Crierion3 Crierion4

𝑎I X11 X12 X13 X14

𝑎J X21 X22 X23 X24

𝑎! X31 X32 X33 X34

DYNAMIC PLACEMENT WITH CODE
MIGRATION

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CODE
MIGRATION

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Placement doesn’t need to
be static

Migration allows us to move
code between nodes on
demand

Why? What? How?

YOU USE MIGRATION EVERY DAY!

• ________________ is the simplest and most common form of code migration
• You probably use this hundreds of times every day…

• What is it?

• Why is it used?
• What problems does it cause?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

YOU USE MIGRATION EVERY DAY!

• ________________ is the simplest and most common form of code migration
• You probably use this hundreds of times every day…

• JavaScript files (source code) are migrated from the server to your web
browser for execution
• More responsive UI, local error checking
• Takes advantage of client processing power
• Can open security vulnerabilities
• Adds complexity to software

Prof. Tim Wood & Prof. Roozbeh Haghnazar

JavaScript

WHY MIGRATE?

• The ability to move where code is executed provides flexibility

• Performance
• Reduced perceived latency by having JS update a GUI locally

• Resource efficiency
• Move VMs to a different server for consolidation

• Security
• Move processing to data for compliance reasons

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MIGRATION CHARACTERISTICS

• Weak Mobility: just the code is moved and restarted
• e.g., JavaScript.
• Simple implementation, but limited flexibility

• Strong Mobility: code & state is moved and execution continues seamlessly
• e.g., VM migration
• Very powerful, but hard to implement

• Which side of the communication starts the migration?
• The machine currently executing the code (sender-initiated)
• The machine that will ultimately execute the code (receiver-initiated).

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHAT TO MIGRATE?

• A running component consists of three “segments”:
1. Code – instructions
2. Resources – external references
3. Execution – current state

JavaScript code migration?
Process migration?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

HOW TO MIGRATE A PROCESS?

• How cleanly isolated is a process?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Process

Operating System

Hardware

Process

HOW TO MIGRATE A PROCESS?

• Code, libraries, data/image files
• Stack/Heap/registers
• OS state: file descriptors, sockets,

scheduler information, permissions

• IP address?
• HW devices like GPUs, printers?
• Inter-process communication?
• Requirements for destination?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Operating System

Hardware

Process
Process

WHAT ABOUT RESOURCES?

• What makes code migration difficult is the requirement to migrate resources.
• Resources are the external references that a process is currently using, and

includes (but is not limited to):
• Variables, open files, network connections, printers, databases, etc...

• Not all resources can be migrated
• What if source and destination hosts are heterogenous?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROCESS MIGRATION WITH CRIU

• CRIU = Checkpoint/Restore in Userspace
• Libraries supported by Linux to enable checkpointing and migration
• “In userspace” meaning it requires limited kernel support

• Checkpoint + Restore = Migration!

• Saves all process and OS state to a file
• Can operate on a tree of processes (containers!)

• Restore process(es) from a checkpoint file

• Based on old research like [Zap, OSDI 2002]

Prof. Tim Wood & Prof. Roozbeh Haghnazar https://criu.org

Pronounced Kree-ew

VM MIGRATION

• Moving an entire VM is actually a lot simpler!
• Virtual machine cleanly encapsulates all processes and OS

• Simple, well defined interfaces are very useful in systems!
• Migrate VM’s memory and CPU state
• Update network configuration (ARP message)

Supported by Xen, Vmware, KVM

VM MIGRATION TECHNIQUES

• Stop and Copy: pause VM and copy all of its data, then resume on host 2
• Iterative: Copy pages as VM runs, track what gets “dirtied” and resend

• Pull: Start running on destination immediately and pull missing pages over
network on demand

Trade-offs?

See [Clark, Usenix 2005], [Wood VEE 2011], etc

MOBILE / IOT

Prof. Tim Wood & Prof. Roozbeh Haghnazar

How can we use
migration in a mobile

/ IoT environment?

MOBILE CODE OFFLOAD
• Mobile Code Offload

• Migrate components
of an application
between phone and
cloud

• Decide what to migrate
based on available
resources
• Network latency to

cloud?
• Battery life on device?

• See [Maui, MobiSys 2010] and
others

Prof. Tim Wood & Prof. Roozbeh Haghnazar
1

2

3

SOFTWARE AGENTS

• What is a software agent?
• “An autonomous unit capable of performing a task in collaboration with other,

possibly remote, agents”.
• Software agents are a software architecture that focuses on dynamic,

flexible software components that can make their own decisions
• Can involve dynamic migration driven by the software component itself

• Autonomic Computing
• Self-configuring, Self-managing, Self-healing, Self-optimizing, Self-organizing…
• Goal is to reduce the complexity of distributed systems by building intelligence

and automated control into the components

Prof. Tim Wood & Prof. Roozbeh Haghnazar

FINAL PROJECT

• Groups of 3-4 students
• Research-focused: Reimplement or

extend a research paper
• Implementation-focused:

Implement a simplified version of a
real distributed system

• Course website has sample ideas
• But don’t feel limited by them!
• You don’t have to use go!

• Timeline
• Milestone 0: Form a Team - 10/12
• Milestone 1: Select a Topic - 10/19
• Milestone 2: Literature Survey - 10/29
• Milestone 3: Design Document - 11/5
• Milestone 4: Final Presentation - 12/14

Prof. Tim Wood & Prof. Roozbeh Haghnazar

https://gwdistsys20.github.io/project/

WHICH LB ARCHITECTURE IS BETTER?

Layer 7

Layer 4

Layer 4

Layer 4

Layer 4

Layer 4

Layer 7

Layer 7

Layer 7

Layer 7

