
DISTRIBUTED SYSTEMS
CS6421

RESOURCE MANAGEMENT
Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book
&

Silberschatz, Galvin and Gagne @ 2013

THIS WEEK…

Resource Management in Distributed Systems
• HW Resources: CPU, Memory, Disk, Network
• Single node vs Cluster management

Common Resource Management Problems
• Placement – entire processes/VMs/containers
• Task Scheduling – long running tasks/jobs
• Load Balancing – fine grained requests

Prof. Tim Wood & Prof. Roozbeh Haghnazar

OS AND RESOURCES

Prof. Tim Wood & Prof. Roozbeh Haghnazar

• An operating system has three main
functions:
• manage the computer's resources,

such as the central processing unit,
memory, disk drives, and network,

• establish a user interface,
• Execute and provide services for

applications software.
• Operating System

• CPU Management
• Memory Management
• Process Management
• I/O Management (Disk, Network,

etc.)
• User Management

OS SCHEDULING: A REVIEW

• OS manages resources on my laptop
• CPU Scheduler – policies to “timeslice” the processor
• Memory management – apps can be greedy
• IO – apps can be greedy

• Linux CPU scheduler decides what to run based on current state of all
processes

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROCESS STATE DIAGRAM

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLASSIFICATION OF SCHEDULING ACTIVITY
• Long term – performance – Makes

a decision about how many
processes should be made to stay
in the ready state

• Short term – Context switching
time – Short term scheduler will
decide which process to be
executed next and then it will call
dispatcher.

• Medium term – Swapping time –
Suspension decision is taken by
medium term scheduler. Medium
term scheduler is used for
swapping that is moving the
process from main memory to
secondary and vice versa.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SCHEDULING CRITERIA

Prof. Tim Wood & Prof. Roozbeh Haghnazar

What are the goals of a CPU
scheduler?

SCHEDULING CRITERIA

• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their

execution per time unit
• Turnaround time – amount of time to execute a

particular process
• Waiting time – amount of time a process has

been waiting in the ready queue
• Response time – amount of time it takes from

when a request was submitted until the first
response is produced, not output (for time-
sharing environment)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Do we maximize or
minimize these?

OPERATING SYSTEM
EXAMPLES

LINUX SCHEDULING HISTORY

• Version 1.2: Round Robin
• Queue holds all processes
• Run for a quantum, then

preempt
• Add to end of queue

• Version 2.4: O(n) Scheduler
• Scan list and pick process with

highest “goodness”
• Based on amount of time

quantum used and last
scheduling time

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RR Run Queue

CPU

O(n) Run Queue

CPU

Pros/Cons?

19
95

20
01

LINUX SCHEDULING HISTORY

• Version 2.5: O(1) Scheduler
• Multiple Priority Queues (sorted)
• Pick a priority, take head entry
• At end of quantum, recalculate

time slice and adjust priority
• Better multi-CPU/multi-core

support
• More complex but efficient

Prof. Tim Wood & Prof. Roozbeh Haghnazar
Array of Priority Queues

Pros/Cons?

20
02

CPU

Expired

High

Low

LINUX SCHEDULING HISTORY

• Version 2.6: CFS
• Red-Black-Tree instead of queues
• Processes sorted based on

“need”
• Tries to fairly allocate time
• Schedules interactive tasks more

frequently, for shorter times

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Pros/Cons?

20
04
to

prese
nt

WINDOWS SCHEDULER
• Windows uses priority-based preemptive

scheduling
• Highest-priority thread runs next
• Dispatcher is scheduler
• The system assigns time slices in a round-robin

fashion to all threads with the highest priority.
• Real-time threads can preempt non-real-time
• 32-level priority scheme
• Priority 0 is memory-management thread
• Queue for each priority
• If no run-able thread, runs idle thread
• Multilevel feedback queue algorithm is used

on windows 10

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WINDOWS SCHEDULER

Prof. Tim Wood & Prof. Roozbeh Haghnazar

high above
normal normal below

normal
idle
priority

time-critical

real-
time

31

26

25

24

23

22

16

15

15

14

13

12

11

1

15

12

11

10

9

8

1

15

10

9

8

7

6

1

15

8

7

6

5

4

1

15

6

5

4

3

2

1

highest

above normal

normal

lowest

idle

below normal

Process Priority Class

Thread
 Priority C

lass

OS SCHEDULING SUMMARY

• Scheduler decides which task should run next to meet a policy
• High vs Low priority
• Real time vs interactive vs batch
• Fairness between processes

• Scheduler should minimize overhead
• O(n) vs O(log n) vs O(1)
• Time quantum

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RESOURCE
MANAGEMENT
IN DISTRIBUTED
SYSTEMS

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RESOURCE MANAGEMENT VS SCHEDULING
• Scheduling

• Method by which work is assigned to resources that complete the work
• Focus is on the policy goals (response time, fairness, etc)
• Typically at fine time scales (milliseconds/seconds)

• Resource management
• Dynamic allocation and de-allocation of processor cores, memory pages, and

various types of bandwidth to computations that compete for those resources.
• Focus is on HW resources (utilization, power consumption, etc)
• Typically at long time scales (minutes/hours/days)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED
RESOURCE
MANAGEMENT
Multiple types of HW infrastructure
• Compute, Storage, Network
Virtualization lets us “slice” resources
• VMs, storage pools, virtual

networks
Resource Management is layered
• Cloud Applications
• Cloud infrastructure
• Individual Servers
Prof. Tim Wood & Prof. Roozbeh Haghnazar

ZTE uSmartCloud Data Center

REQUIREMENTS

• What properties do we want
for this Manager?

• What goals might it have?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Resource Manager

REQUIREMENTS

• Properties:
• Scalable
• Comprehensive
• Customizable
• Topology Aware
• Fault Tolerant

• Goals:
• Throughput, Latency
• Resource efficiency
• Fairness
• Isolation

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Resource Manager

IMPORTANCE

• Efficiently managing a cloud
data center important:
• Consume lots of power!
• Servers cost lots of money!

• But keeping load evenly
balanced is very difficult

Prof. Tim Wood & Prof. Roozbeh Haghnazar

“U.S. data centers use more than 90 billion
kilowatt-hours of electricity a year... Global data
centers used roughly 3% of the total electricity…”
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#6d07e9555a30

More than 50% of the cost of running a cloud data
center comes from buying servers. Idle servers are

a waste of money!
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/

From Google’s The Data Center as a Computer report From Facebook Engineering blog on Memcached hotspots

DISTRIBUTED RESOURCE
MANAGEMENT APPROACHES

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED RESOURCE
MANAGEMENT APPROACHES

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DECENTRALIZED MANAGEMENT
• The main characteristics of a decentralized approach are the following:

• Increased Availability
• Fault tolerance
• Enhanced performance
• Better Scalability
• Greater Autonomy

• Despite its advantages, there are a lot of challenges in the decentralized management
model which are discussed below:
• Balancing the level of autonomy
• Complexity of decentralized management
• How often to share information
• Decisions based on partial information
• Scalability
• Robustness
• Long delays
• Fast optimization techniques

Prof. Tim Wood & Prof. Roozbeh Haghnazar

3 RESOURCE MANAGEMENT
CHALLENGES

1. Placement – entire
processes/VMs/containers

2. Task Scheduling – long running
tasks/jobs

3. Load Balancing – fine grained
requests

Prof. Tim Wood & Prof. Roozbeh Haghnazar

1. PLACEMENT

• What should we run on each host in our cluster
/ data center?

• Depends on the type of distributed system!
• Super Computer: Run one giant application

across all servers
• Cloud Computing: Divide up each server into

many parts and run

• Placement: Where to run each
process/VM/container?
• What factors will affect how difficult this

problem is?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

VM CONSOLIDATION

Prof. Tim Wood & Prof. Roozbeh Haghnazar

• Increase the energy efficiency
by resource management

50%

VM PLACEMENT IN EC2

• Depending on the type of workload, you can create
a placement group using one of the following
placement strategies:
• Cluster
• Partition
• Spread

Prof. Tim Wood & Prof. Roozbeh Haghnazar

What is the result/usage of
each strategy?

Cluster à Low latency/high throughput network
performance/typical of HPC applications

Partition à reduce the likelihood of correlated hardware
failures. typically used by large distributed and replicated
workloads, such as Hadoop, Cassandra, and Kafka

Spread à to reduce correlated failures. Useful for
applications that have a small number of critical instances
that should be kept separate from each other. Reduces
the risk of simultaneous failures

PLACEMENT PROBLEM

• Inputs
• List of VMs

• CPU and Memory needs
• List of hosts

• CPU/memory capacity

• How to assign VMs to hosts?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Does this sound like a
problem from your algorithms
class?

Bin-packing / knapsack

PLACEMENT HEURISTICS

• In fact, placement problem is a many objective problem space since you
have to consider CPU capacity, Memory, Power consumption, Network, and
etc. as several dimensions or objective.

• First Fit
• Best Fit
• Worst Fit
• In the following slides we just consider Memory blocks as a single objective to

explain the algorithms

Prof. Tim Wood & Prof. Roozbeh Haghnazar

FIRST FIT (FF)
• A resource allocation scheme (usually for memory). First Fit fits

VM into the host by scanning from the beginning of available
hosts to the end, until the first free space which is at least big
enough to accept the VM is found. This space is then
allocated to the data. Any left over becomes a smaller,
separate free space.

• If the data to be allocated is bigger than the biggest free
space, the request cannot be met, and an error is generated.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

600

300

200

500

100

VM1
(212)

Host 1 Host 2 Host 3

VM2
(417)

VM3
(112)

N
e

w
 Inte

rna
l Fra

g
m

e
nta

tio
n

Host 4 Host 5

VM4
(426)

BEST FIT (BF)
• The best fit deals with allocating the smallest free block which meets the required

capacity of the VMs. This algorithm first search the entire list of available hosts then
selects the best option – which is the smallest partition – to place the VM. In this
method, the space wastage is minimal

Prof. Tim Wood & Prof. Roozbeh Haghnazar

600

300

200

500

100

VM1
(212)

Host 1 Host 2 Host 3

VM2
(417)

VM3
(112)

N
e

w
 Inte

rna
l Fra

g
m

e
nta

tio
n

Host 4 Host 5

VM4
(426)

WORST FIT (WF)
• Worst Fit allocates a VM to the partition which is largest sufficient among the

freely available partitions available in the host. If a large process comes at a
later stage, then memory will not have space to accommodate it.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

600

300

200

500

100

VM1
(212)

Host 1 Host 2 Host 3

VM2
(417)

VM3
(112)

N
e

w
 Inte

rna
l Fra

g
m

e
nta

tio
n

Host 4 Host 5

VM4
(426)

STATIC VS DYNAMIC PLACEMENT

• VM placement schemes can be classified as
dynamic and static:
• Static VM placement: in which the mapping of

the VMs is fixed throughout the lifetime of the
VM and it will not be recomputed for a long
period of time.

• Dynamic VM placement: in which the initial
placement is allowed to change due to some
changes in the system load
• Reactive VM placement
• Proactive VM placement

Prof. Tim Wood & Prof. Roozbeh Haghnazar

2. TASK SCHEDULING

• Given a set of nodes running a service, how should we assign incoming jobs?
• Finer grained than placement – jobs/tasks typically last seconds-minutes

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SCHEDULING ALGORITHMS

• Job Scheduling is invoked after services have been deployed by a
placement engine
• Placement engine might deploy a Map Reduce worker node, then a Scheduler

determines the order that it processes incoming jobs

• Similar algorithms/policies as OS CPU scheduling, but typically focuses on
longer time scale

• For our purposes: task = job
• But this varies by system, e.g., in MapReduce a job is split into tasks but in Real

Time Systems, a Task is broken down into jobs…

Prof. Tim Wood & Prof. Roozbeh Haghnazar

FIRST- COME, FIRST-SERVED (FCFS)
SCHEDULING

• Suppose that the processes arrive in the order: P1 , P2 , P3

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Process Exec Time

!! 24
!" 3
!# 3

Pros/Cons?

FCFS SCHEDULING

Suppose that the processes arrive in the order:
P2 , P3 , P1

! The Gantt chart for the schedule is:

!Waiting time for P1 = 6; P2 = 0; P3 = 3
!Average waiting time: (6 + 0 + 3)/3 = 3
!Much better than previous case… but need to be lucky!
!Convoy effect - short process behind long process

!Consider one CPU-bound and many I/O-bound
processes

P1
0 3 6 30

P2 P3

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SHORTEST-JOB-FIRST (SJF) SCHEDULING
• Sort tasks by the length of their execution time

• Process shortest tasks first

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Pros/Cons?

SHORTEST-JOB-FIRST (SJF) SCHEDULING
• Sort tasks by the length of their execution time

• Process shortest tasks first
• SJF is optimal – gives minimum average waiting time for a given set of processes

• The difficulty is knowing the length of the next CPU request
• Could ask the user

• Unfortunately, SJF requires knowledge of the future.
• Sometimes we can use past performance to predict future performance!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SHORTEST-JOB-FIRST (SJF) SCHEDULING

Process Exec Time

!! 6
!" 8
!# 7
!$ 3

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P3
0 3 24

P4 P1
169

P2

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

SHORTEST-JOB-FIRST (SJF) SCHEDULING

Process Exec Time

!! 6
!" 8
!# 7
!$ 3

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P3
0 3 24

P4 P1
169

P2

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

But what if the
user wants P2
done first??!

EARLIEST DEADLINE FIRST (EDF)
• Earliest Deadline First (EDF) is an optimal dynamic priority scheduling algorithm used in real-

time systems.
• All new tasks announce their deadline, execution time, and period (interval between arrivals)
• EDF will always schedule the task with the earliest deadline

• Simple scheduling policy
• Has provable guarantees about meeting deadlines if possible

• To be optimal, an executing task must be preempted if any other task with an earlier
deadline arrives (increases system complexity)

• EDF has been utilized and implemented in the many systems (either as CPU scheduler or Job
Scheduler):
• Linux (SCHED_DEADLINE) and the Xen Virtualization Platform
• Real Time OSes: S.Ha.R.K, ERIKA Enterprise, Everyman, MaRTE OS, others

Prof. Tim Wood & Prof. Roozbeh Haghnazar

EARLIEST DEADLINE FIRST (EDF)
• Job stats let us predict overall system utilization

• CPU Utilization: !"+
#
$+

%
& = 95% > 100% ü

• Can meet all deadlines!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Process Arrival Deadline Time
Period

!! 1 4 4
!" 2 6 6
!# 3 8 8

TASK DEPENDENCIES
• What if tasks have dependencies between them?
• A directed acyclic graph (DAG) is a directed graph

with no cycles.

• DAG is a useful concept in analyzing task scheduling
and concurrency control.

• When distributing a program across multiple
processors, we’re in trouble if one part of the program
needs an output that another part hasn’t generated
yet!

• A topological sort of a finite DAG is a list of all the
vertices such that each vertex ! appears earlier in
the list than every other vertex reachable from !.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DIRECTED ACYCLIC GRAPHS &
SCHEDULING

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DAG &
PARALLELISM

• The tasks in "% can be performed in step ̇$ for 1 ≤
' ≤ 4.

• A chain of 4 tasks (the critical path in this example)
is shown with bold edges.

• The time it takes to schedule tasks, even with an
unlimited number of processors, is at least as large
as the number of vertices in any chain.

• A partition of a set A is a set of nonempty subsets
of A called the blocks of the partition, such that
every element of A is in exactly one block.
• Ex: one possible partition of the set), +, ,, -, . is:

!, # $, % &
• A parallel schedule for a DAG, D, is a partition of
/ 0 into blocks "&, "!, … such that when 2 < 4 , no
vertex in "' is reachable from any vertex in "(

Prof. Tim Wood & Prof. Roozbeh Haghnazar

3. LOAD BALANCING

• What if tasks are arriving really really
quickly?
• Web requests arriving to Facebook –

100 Million requests per second!
• We need to quickly assign requests to

a backend server
• We want to evenly balance the load

across the servers

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Load Balancer

ROUND ROBIN

• Simplest load balancing policy
• LB tracks where last request was sent
• Send next request to next server in list
• Loop back to first server

• Evenly distributes requests to servers

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Pros/Cons?

RR Load Balancer

1 2 3
4

ROUND ROBIN

• Simplest load balancing policy
• LB tracks where last request was sent
• Send next request to next server in list
• Loop back to first server

• Evenly distributes requests to servers
• Benefits:

• Efficient to implement, low overhead
• Number of requests is evenly balanced

• Issues:
• What if servers are heterogeneous?
• What if requests are heterogeneous?
• No server affinity

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RR Load Balancer

1 2 3
4

RANDOM

• Even simpler load balancing policy!
• Round Robin requires state at the LB
• Instead, just randomly assign each

request to a server
• If number of requests is high, load

should be approximately equal
• Has similar pros/cons as RR

• Can provide affinity if randomness is
based on Src IP

• Weighted RR/ Weighted Random
• Can purposefully skew requests based

on server capacity

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Random Load Balancer

1 2 3
4

JOIN THE SHORTEST QUEUE

• Send the request to the server with
the shortest queue of requests
• Load aware policy

• Sounds perfect!
• … what’s the problem?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

JSQ Load Balancer

1 2 3
4

Pros/Cons?

JOIN THE SHORTEST QUEUE

• Send the request to the server with
the shortest queue of requests
• Load aware policy

• Need to query servers to find out
queue length
• Solution: Randomly probe N servers
• See “Power of Two Choices”

• Adds overhead in the critical path
to check the queues

• What if there are multiple LBs?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

JSQ Load Balancer

1 2 3
4

