DISTRIBUTED SYSTEMS

CS642]
DISTRIBUTED ARCHITECTURE

Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum'’s Distributed Systems book

TYPES OF DISTRIBUTED
SYSTEMS

 Distributed Computing Systems

« Clusters
o Grids
» Distributed Information Systems

* Transaction Processing Systems
» Enterprise Application Integration

» Distributed Embedded Systems

« Home systems
* Health care systems
« Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

JJ Parallel Applications H

Parallel Programming Environments :]

CLUSTER
COMPUTING

Sequential Applications

Cluster Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation

Comm. SIW

PC/Workstation

I Comm. S/W

Net. Interface HW

Net. Interface HW]

PC/Workstation

Comm. S'W

PC/Workstation

Comm. SIW

PC/Workstation

Comm. S'W

Net. Interface HW

Net. Interface HW

Net. Interface HW

O High Speed Network/Switch >

Shared Memory: Uniform Memory Access Obtained from www.computing.linl.gov Distributed Memory System Obtained from www.computing.linl.gov

Prof. im Wood & Prof. Roozbeh Haghnazar

CLUSTERS CLASSIFICATIONS

* High Performance

» Expandability and Scalability
* High Throughput

* High Availability

Prof. im Wood & Prof. Roozbeh Haghnazar

-

CLUSTERS -

B E O W U L F M O D E L 10/100 MB/s Ethernet Switch
« Master-slave paradigm @

« One processor is the master;
allocates tasks to other
processors, maintains batch
queue of submitted jobs,
handles interface to users

* Master has libraries to handle
message-based
communication or other
features (the middleware).

Master

Internet

5 Networked Disk

- Storage
= 9

Compute Nodes

» Proper for parallel programs

Prof. im Wood & Prof. Roozbeh Haghnazar

http://www.beowulf.org/

CLUSTERS — MOSIX
I\/\ODEL

Provides a symmetric, rather than
hierarchical paradigm
« Single system image simplifies
deployment

* Processes can migrate
between nodes dynamically

« “Operating-system-like”; looks &
feels like a single computer with
multiple processors

* Provides resource discovery
and and automatic workload
distribution among clusters

Prof. im Wood & Prof. Roozbeh Haghnazar

Client 1

k‘ "’ § \

Cluster A

Cluster B

Client 3

Cluster C

http://www.mosix.org/txt_about.html

GRID
COMPUTING
SYSTEMS

Prof. im Wood & Prof. Roozbeh Haghnazar

Highly heterogeneous with respect to
hardware, software, networks, security
policies, etc.

Grids support virtual organizations: @
collaboration of users who pool resources
(servers, storage, databases) and share
them

Grid software is concerned with managing
sharing across administrative domains.

A PROPOSE

Fabric layer: interfaces to local resources

Connectivity layer: supports usage of multiple resources
for a single application; e.g., access a remote resource or
transfer data between sites

Resource layer manages a single resource
Collective layer: resource discovery, allocation, etc.
Applications: use the grid resources

The collective, connectivity and resource layers together
form the middleware layer for a grid

D ARCHITECTURE FOR

GRID SYSTEMS

Applications

l

Collective layer
l l

v v

Connectivity layer Resource layer
Fabric layer

. A layered architecture for grid computing systems

Prof. Tim Wood & Prof. Roozbeh Haghnazar

* Open Grid Services Architecture
(OGSA] is a service-oriented
architecture

« Sites that offer resources to share

do so by offering specific Web
services.

« The architecture of the OGSA
model is more complex than the
previous layered model.

Prof. im Wood & Prof. Roozbeh Haghnazar

More specialized and
domain-specific services

OGSA Platform Services

(CMM, Service Domain, Policy, Security,
Logging, Metering/Accounting)

Host Env. & Protocol Binding

Hosting Environment J Protocol

| SHN—

OGSA — ANOTHER GRI
ARCHITECTURE

Public
Network

Dddr D9do ‘4dd1o

2
e

http://www.globus.org/ogsa/

TYPES OF DISTRIBUTED
SYSTEMS

* Distributed Computing Systems

« Clusters
o Grids
* Distributed Information Systems

* Transaction Processing Systems
» Enterprise Application Integration

» Distributed Embedded Systems

« Home systems
* Health care systems
« Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

D INFORMATION
SYSTEMS

DISTRIBUTE

e Business-oriented

« Systems to make a number of separate network applications interoperable
and build “enterprise-wide information systems”.

* Two types discussed here:
» Transaction processing systems
« Enterprise application integration

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROCESSING
SYSTEI\/\S

Provide a highly structured client-
server approach for database
applications

* Transactions are the communication
model
« Obey the ACID properties:
« Atomic: all or nothing

« Consistent: invariants are
preserved

 |solated (serializable)

« Durable: committed operations
can’'t be undone

Prof. im Wood & Prof. Roozbeh Haghnazar

Primitive

Description

BEGIN_TRANSACTION

Mark the start of a transaction

END_TRANSACTION

Terminate the transaction and try to commit

ABORT_TRANSACTION

Kill the transaction and restore the old values

READ

Read data from a file, a table, or otherwise

WRITE

Write data to a file, a table, or otherwise

TRANSACTION PROCESSINCY
SYSTEMS

Nested transaction

Subtransaction Subtransaction

. O

Airline database Hotel database

Two different (independent) databases

A nested transaction.

Prof. im Wood & Prof. Roozbeh Haghnazar

IMPLEMENTING TRANSACTIONS

Conceptually, private copy of all data
Actually, usually based on logs

Multiple sub-fransactions — commit, abort
« Durability is a characteristic of fop-level transactions
only
Nested tfransactions are suitable for distributed systems

« Transaction processing monitor may interface between
client and multiple data bases.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

« Supports a less-structured approach (as

compared to fransaction-based
systems)

« Application components are allowed
to communicate directly

« Communication mechanisms to
support this include CORBA, Remote
Procedure Call (RPC), Remote Method
Invocation (RMI), and Message-

Oriented middleware (MOM).
@ D

. 4

Prof. Tim Wood & Prof. Roozbeh Haghnazar

T

ENTERPRISE APPLICATION

INTEGRATION

Client
application

|

Client
application

I

Communication middleware

Server-side
application

o

Server-side
application

o

Server-side
application

o

Middleware as a communication facilitator in
enterprise application integration.

TYPES OF DISTRIBUTED
SYSTEMS

* Distributed Computing Systems

« Clusters
o Grids
» Distributed Information Systems

* Transaction Processing Systems
» Enterprise Application Integration

* Distributed Embedded Systems

« Home systems
* Health care systems
« Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTE

T

D PERVASIVE SYSTEMS

* The first two types of systems are characterized by their
stability: nodes and network connections are more or less

fixed

* This type of system is likely to incorporate small, battery-
powered, mobile devices

« Home systems

 Electronic health care systems — patient monitoring
« Sensor networks — data collection, surveillance

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ELECTRONIC HEALTH CARE

SYSTEMS

N\
Tilt Sensor \ . External
/ \ \ storage
/ \ \
ECG sensor ‘| \‘
PDA ' | €——————>
\

; | GPRS/UMTS
Motion sensors 4

e

—_—— - —_— -

body-area network body-area network

(@) (b)

Monitoring a person in a pervasive electronic health care system,
using (a) a local hub or (b) a continuous wireless connection.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Organizing a sensor network database,
while storing and processing data (q)
only at the operator’s site or (b) only
at the sensors.

Each sensor

Operator's site

]

can process and Sensor network

store data
Operator's site

Sensors
send only
answers

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SENSOR NETWORKS

Sensor network

Sensor data E

is sent directly
to operator

Prof. im Wood & Prof. Roozbeh Haghnazar

ARCHITECTURES

DEFINITION OF ARCHITECTURE

The art or science of building

* specifically : the art or practice of designing and building structures and especially
habitable ones

Formation or construction resulting from or as if from a conscious act or a unifying
or coherent form or structure

A method or style of building

The manner in which the components of a computer or computer system are
organized and integrated

Prof. im Wood & Prof. Roozbeh Haghnazar

P
Software Architectures -

describe the organization and
interaction of software
components; focuses on
logical organization of
software (component
interaction, etc.)

SOFTWARE/SYSTEM
ARCHITECTURE

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURE VS DESIGN

ARCHITECTURE VS DESIGN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURE VS DESIGN

A component is an
encapsulated part of a
software system

Components serve as the
building blocks for the
stfructure of a system

Prof. im Wood & Prof. Roozbeh Haghnazar

COMPONENT

A component has an
interface

At a programming-
language level,
components may be
represented as modules,
classes, objects or as a set of
related functions

SUBSYSTEM

« A subsystem is a set of collaborating
components performing a given task

« A subsystem is considered a separate
entity within a software architecture
* |t performs its designated task by

interacting with other subsystems and
components...

Prof. im Wood & Prof. Roozbeh Haghnazar

ARCHITECTURAL STYLES

* An architectural style describes a particular way to
configure a collection of components and connectors.

« Component - a module with well-defined interfaces; reusable,
replaceable

« Connector - communication link between modules

« An architectural style is a coordinated set of architectural constraints that
restricts the relationships among those elements

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURAL STYLES

Layered architectures
Object-based architectures
Data-centered architectures
Event-based architectures

MW~

Prof. im Wood & Prof. Roozbeh Haghnazar

1. LAYERED ARCHITECTURES

« Components of layer N; is only allowed Layer N
to call components at the underlying l T
oner Ni-1 Layer N-1
Request | T Response
flow flow
v |
Layer 2
Why? Example? I ;
Layer 1

Prof. im Wood & Prof. Roozbeh Haghnazar

1. LAYERE

« Components of layer N; is only allowed
to call components at the underlying
layer N;_,

Why: hides information,

iInferchangeable layers
Example: Network stack, LAMP

L -

D ARCHITECTURES
l ayer T
Request I!_ayer N1T Response
ow ¢ | flow
V1

2. OBJECT-BASE

« Each object is a component that
encapsulates data and methods

* They are connected through a well
defined remote API that hides intfernals

Why? Example?

Prof. im Wood & Prof. Roozbeh Haghnazar

D ARCHITECTURES

Method call

Object Object

/ State

V@

o

I—I Method
NN

Interface

Object /

D ARCHITECTURES

2. OBJECT-BASE

« Each object is a component that Object Object
encapsulates data and methods
« They are connected through a well

defined remote API that hides internals Method call

Object
State

scaled/developed/managed el S
Example: MapReduce, microservice

web architectures " Object y

Why: components can be individually

* Main purpose: data access and
update

» Processes interact by reading and
modifying data in a centralized shared
repository

Why? Example?

Prof. im Wood & Prof. Roozbeh Haghnazar

. DATA-CENTERED

ARCHITECTURES

Client S/W

ClientS/W |

Client S/W

Data store 7
| (Repositoryor [
e blackboard)

Client S/W

Client S/W

3 Client S/W

4 Client S/W

-
. DATA-CENTERED

ARCHITECTURES
* Main purpose: data access and
U p d O Te Client S/W Client S/W
» Processes interact by reading and Client /W
modifying data in a centralized shared ‘
repository
| Clients/w

ClientS/W [

Why: simplifies data management

4 Client S/W

Client S/W

Example: Dropbox, Message board
systems, Email

4. EVENT-BASE

D ARCHITECTURES

« Communication via event

propogo’rion Component Component
- Publish-subscribe e iipolc
« Broadcast EventdeliveryT T l
» Point-to-point < EooTBas >
T Publish
Why? Example? Component

(@)

Prof. im Wood & Prof. Roozbeh Haghnazar

-
D ARCHITECTURES

4. EVENT-BASE

« Communication via event

propagation . : - t
i : omponen omponen
» Publish-subscribe P pone
« Broadcast Event deliveryT T l
* Point-fo-point < e >
T Publish
Component

Why: decouples sender/receiver,

asynchronous @

Example: Slack, Security monitoring

ARCHITECTURAL STYLES

Layered architectures
Object-based architectures
Data-centered architectures
Event-based architectures

o~

Each style constrains how we will build
the system. Following a style makes
development and extensibility easier.

But sometimes we need a hybrid style!

Prof. im Wood & Prof. Roozbeh Haghnazar

SYSTEM CHARACTERISTICS

« Centralized: A single component/subsystem is “in charge”
« Vertical (or hierarchical) organization of communication and conftrol paths
» Logical separation of functions into client (requester) and server (responder)

* Decentralized: multiple components/subsystems interact as peers
» Horizontal rather than hierarchical communication and control
« Communication paths may be less structured; symmetric functionality

« Hybrid: combine elements of both

Classification of a system as centralized or deceniralized

primarily refers to communication and control
organization

Prof. im Wood & Prof. Roozbeh Haghnazar

VERTICAL VS HORIZONTAL

» Vertical: Layers with different « Horizontal: Components with similar
functionality. Restricted functionality or more diverse
communication communication

Layer N
Layer N-1
Request I T Response Method call
flow flow
v |
Layer 2
Layer 1

Prof. im Wood & Prof. Roozbeh Haghnazar

TRADITIONAL CLIENT-SERVER

e e

« Processes are divided into two groups (clients and servers).
« Synchronous communication: request-reply protocol
« Could be message oriented or RPC

_ Wait for result
ClieNt ———————

Request

Provide service Time —>

« Note: even in this simple example, lots could go wrong!

Prof. im Wood & Prof. Roozbeh Haghnazar

CLIENT ARCHITECTURE

« Server provides processing and data management; client
provides simple graphical display (thin-client)
* Pro: Easier to manage, more reliable, client machines don't need to
be so large and powerful

« Con: Potential performance loss at client

* At the other extreme, all application processing and some
data resides at the client (fat-client approach)
* Pro: reduces workload at server; more scalable
« Con: harder to manage by system admin, less secure

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERED SERVER EXAMPLE

» User-interface level: GUI's (usually) for interacting with end users
* Processing level: data processing applications — the core functionality
« Data level: interacts with data base or file system

Example: a simple search engine

_ User-interface
User interface } level

\ HTML page
Keyword expression containing list

HTML
generator Processing
Query % Ranked list level
generator of page titles
Ranking

Database queries algorithm

Web page titles
with meta-information
Data level

Database
with Web pages

Prof. Tim Wood & Prof. Roozbeh

TIERS, LAYERS, NODES, COMPONENTS

* Layer and fier are roughly equivalent terms, but layer typically implies software
and fier is more likely to refer to component deployment on HW.

« Several software layers might comprise a subsystem deployed as a single *“tier” in @
mulfi-tier web application

« Components are generally software, whereas a node could refer to @
component deployed on a particular server

Layers / Components = Software
Tiers / Nodes = Software deployed on hardware
(usually*)

Prof. im Wood & Prof. Roozbeh Haghnazar

CLIENT-SERVER
SPLIT

Can you come up with an
example service/application which
uses each of these architectures?e

Prof. Tim Wood & Prof. Roozbeh Haghnazar

User interface

-

~-~-

User interface

|

Client Machine

Application

Database

User interface User interface User interface User interface
Application Application Application
$ e Database
________ $ ¢ =
Application Application . /,/"/—\
Database Database Database [Database
Server Machine
(b) () (d) (e)

THREE-TIERED WEB
ARCHITECTURE

Tiers can be spread

across multiple servers

User interface Wait for result
(presentation) T\ TTTTTTTTTTTTTTTTTTTTTTTTTg

Request

Simplifies deployment, :
operation

performance .
D G Wait for data
management, reliability APPHOAHON oo oo S o o el 5

server
Request data Return data
Servers also can play the Database N R
role of client server Time —>

“LAMP Stack” (Linux, Apache, MySQL,
Prof. Tim Wood & Prof. Roozbeh Haghnazar PH P) was the 3-fier standard

DECENTRALIZED
ARCHITECTURES

PEER TO PEER SYSTEMS

« A distributed system that does not rely on centralized coordination
« Peers are equipotent and work together to provide a service

.- .- -
N S / N
=B = - - B
/N \ DA</
- - -
Centralized P2P

Prof. im Wood & Prof. Roozbeh Haghnazar

DECENTRALIZATION BENEFITS

« Cenftralized systems may have Master/Leader node
‘ ' ‘ dinates foll
a single point of failure coordinates followers
« Affects reliability and may be .

a performance bottleneck

i
il

« Decentralization can make a@
system more robust and
performant

Peer-to-Peer system
« But only if it is well designed!

can self-organize

Prof. Tim Wood & Prof. Roozbeh Haghnazar

P2P CHALLENGES

e e

Routing and Discovery
« How to reach other nodes?
« How to find out what other nodes existe

« How to bootstrap when you first join2 m— .

« Consistency / _ﬁ |
- How fo keep informafion consistent across the network? - -

» Reliability / Failure Handling \\ /
 What happens when nodes crash and rejoin? - _-)

« Performance — T

 How to get predictable performance with limited controle

P2P ARCHITECTURES

Structured Unstructured
o | S
i /

* The peers can be connected in a organized (structured) manner or in an ad-
hoc (unstructured) manner

« Why/When might you choose one over the other?

Figures from wikipedia

BOOTSTRAPPING

Structured Unstructured
o —®
o a N/

« How can a node join a P2P network if there is no centralized server to
connect to¢

Figures from wikipedia

BOOTSTRAPPING

Structured Unstructured
—®
. o © %\ Y, \

X ' Wié e
© @ g\ gE. X

« Common Assumptions:

+ New nodes have address of at least - Newnodescan
one other active node broadcast on their radio

- Special peers store extra information to find close neighbors

GNUTELLA P2P FILE SHARING

» Peer-to-Peer file sharing service
* Released by a company owned by AOL on March 14, 2000
 AOL shut down the company the next day...

* Unstructured P2P system
« Booftstrap using pre-defined addresses of starter nodes
« Randomly pick a set of N neighbors (N=5)
« Search for files by querying neighbors
« Neighbors propagate searches up to H hops total (H=7)
* Responses travel back the same path

« Once file is found, tfransfer over direct connection

GNUTELLA

« At most how many e R
neighbors will this searche e
* 5 neighbors per node
* 7 hop max path

 This is a form of flooding

« What could make this
more efficient?

Figures from wikipedia

NOT ALL PEERS ARE EQUAL

Gnutella v0.6 added Ultra Peers and Leaves

Leaf Node:
« Connects to 3 Ultra Peers
 Maintains an index of all its content
« Send queries to Ultra Peer

Ultra Peer:
« Connects to 32 Ultra Peers
« Forwards queries at most 4 hops (not 7)
« Merges the content indexes of all leaf nodes
« Shares content index with all adjacent Ultra Peers
« Only send to an Ultra peer on the 4th hop if query is in index

How does this change thingse

ST,

HOW TO PICK NEIGHBORS?

« Want o avoid disconnected components and weak connectivity between
groups!

 This is why some networks enforce
a structure or hierarchy

