
DISTRIBUTED SYSTEMS
CS6421

DISTRIBUTED ARCHITECTURE
Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

TYPES OF DISTRIBUTED
SYSTEMS

• Distributed Computing Systems
• Clusters
• Grids

• Distributed Information Systems
• Transaction Processing Systems
• Enterprise Application Integration

• Distributed Embedded Systems
• Home systems
• Health care systems
• Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLUSTER
COMPUTING

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Distributed Memory System Obtained from www.computing.llnl.govShared Memory: Uniform Memory Access Obtained from www.computing.llnl.gov

CLUSTERS CLASSIFICATIONS

• High Performance
• Expandability and Scalability
• High Throughput
• High Availability

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLUSTERS –
BEOWULF MODEL
• Master-slave paradigm

• One processor is the master;
allocates tasks to other
processors, maintains batch
queue of submitted jobs,
handles interface to users

• Master has libraries to handle
message-based
communication or other
features (the middleware).

• Proper for parallel programs

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Master

http://www.beowulf.org/

CLUSTERS – MOSIX
MODEL
• Provides a symmetric, rather than

hierarchical paradigm
• Single system image simplifies

deployment
• Processes can migrate

between nodes dynamically
• “Operating-system-like”; looks &

feels like a single computer with
multiple processors
• Provides resource discovery

and and automatic workload
distribution among clusters

Prof. Tim Wood & Prof. Roozbeh Haghnazar

http://www.mosix.org/txt_about.html

GRID
COMPUTING

SYSTEMS

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Highly heterogeneous with respect to
hardware, software, networks, security
policies, etc.

Grids support virtual organizations: a
collaboration of users who pool resources
(servers, storage, databases) and share
them

Grid software is concerned with managing
sharing across administrative domains.

A PROPOSED ARCHITECTURE FOR
GRID SYSTEMS

• Fabric layer: interfaces to local resources

• Connectivity layer: supports usage of multiple resources
for a single application; e.g., access a remote resource or
transfer data between sites

• Resource layer manages a single resource

• Collective layer: resource discovery, allocation, etc.

• Applications: use the grid resources

• The collective, connectivity and resource layers together
form the middleware layer for a grid

Prof. Tim Wood & Prof. Roozbeh Haghnazar

. A layered architecture for grid computing systems

Grid middleware layer

OGSA – ANOTHER GRID
ARCHITECTURE

• Open Grid Services Architecture
(OGSA) is a service-oriented
architecture
• Sites that offer resources to share

do so by offering specific Web
services.

• The architecture of the OGSA
model is more complex than the
previous layered model.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

http://www.globus.org/ogsa/

TYPES OF DISTRIBUTED
SYSTEMS

• Distributed Computing Systems
• Clusters
• Grids

• Distributed Information Systems
• Transaction Processing Systems
• Enterprise Application Integration

• Distributed Embedded Systems
• Home systems
• Health care systems
• Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED INFORMATION
SYSTEMS

• Business-oriented
• Systems to make a number of separate network applications interoperable

and build “enterprise-wide information systems”.
• Two types discussed here:

• Transaction processing systems
• Enterprise application integration

Prof. Tim Wood & Prof. Roozbeh Haghnazar

TRANSACTION
PROCESSING
SYSTEMS
• Provide a highly structured client-

server approach for database
applications

• Transactions are the communication
model

• Obey the ACID properties:
• Atomic: all or nothing
• Consistent: invariants are

preserved
• Isolated (serializable)
• Durable: committed operations

can’t be undone

Prof. Tim Wood & Prof. Roozbeh Haghnazar

TRANSACTION PROCESSING
SYSTEMS

A nested transaction.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

IMPLEMENTING TRANSACTIONS
• Conceptually, private copy of all data
• Actually, usually based on logs
• Multiple sub-transactions – commit, abort

• Durability is a characteristic of top-level transactions
only

• Nested transactions are suitable for distributed systems
• Transaction processing monitor may interface between

client and multiple data bases.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ENTERPRISE APPLICATION
INTEGRATION• Supports a less-structured approach (as

compared to transaction-based
systems)

• Application components are allowed
to communicate directly

• Communication mechanisms to
support this include CORBA, Remote
Procedure Call (RPC), Remote Method
Invocation (RMI), and Message-
Oriented middleware (MOM).

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Middleware as a communication facilitator in
enterprise application integration.

Examples?
Tell some software architectures that

can be applied on this model

TYPES OF DISTRIBUTED
SYSTEMS

• Distributed Computing Systems
• Clusters
• Grids

• Distributed Information Systems
• Transaction Processing Systems
• Enterprise Application Integration

• Distributed Embedded Systems
• Home systems
• Health care systems
• Sensor networks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED PERVASIVE SYSTEMS

• The first two types of systems are characterized by their
stability: nodes and network connections are more or less
fixed
• This type of system is likely to incorporate small, battery-

powered, mobile devices
• Home systems
• Electronic health care systems – patient monitoring
• Sensor networks – data collection, surveillance

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ELECTRONIC HEALTH CARE
SYSTEMS

Monitoring a person in a pervasive electronic health care system,
using (a) a local hub or (b) a continuous wireless connection.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SENSOR NETWORKS

Organizing a sensor network database,
while storing and processing data (a)
only at the operator’s site or (b) only
at the sensors.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURES

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DEFINITION OF ARCHITECTURE

• The art or science of building
• specifically : the art or practice of designing and building structures and especially

habitable ones
• Formation or construction resulting from or as if from a conscious act or a unifying

or coherent form or structure
• A method or style of building
• The manner in which the components of a computer or computer system are

organized and integrated

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SOFTWARE/SYSTEM
ARCHITECTURE

Software Architectures –
describe the organization and

interaction of software
components; focuses on
logical organization of
software (component

interaction, etc.)

System Architectures -
describe the communication
and placement of software

components on physical
machines

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURE VS DESIGN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Where?

How? What?

What?

ARCHITECTURE VS DESIGN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Where?

How?

ARCHITECTURE VS DESIGN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Where?

How? What?

COMPONENT

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A component is an
encapsulated part of a
software system

A component has an
interface

Components serve as the
building blocks for the
structure of a system

At a programming-
language level,
components may be
represented as modules,
classes, objects or as a set of
related functions

SUBSYSTEM

• A subsystem is a set of collaborating
components performing a given task

• A subsystem is considered a separate
entity within a software architecture
• It performs its designated task by

interacting with other subsystems and
components…

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURAL STYLES

• An architectural style describes a particular way to
configure a collection of components and connectors.
• Component - a module with well-defined interfaces; reusable,

replaceable
• Connector – communication link between modules

• An architectural style is a coordinated set of architectural constraints that
restricts the relationships among those elements

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARCHITECTURAL STYLES

1. Layered architectures
2. Object-based architectures
3. Data-centered architectures
4. Event-based architectures

Prof. Tim Wood & Prof. Roozbeh Haghnazar

1. LAYERED ARCHITECTURES

• Components of layer !! is only allowed
to call components at the underlying
layer !!"#

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why? Example?

1. LAYERED ARCHITECTURES

• Components of layer !! is only allowed
to call components at the underlying
layer !!"#

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why: hides information,
interchangeable layers

Example: Network stack, LAMP

2. OBJECT-BASED ARCHITECTURES

• Each object is a component that
encapsulates data and methods

• They are connected through a well
defined remote API that hides internals

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why? Example?

Object

Architectures: Architectural styles Object-based and service-oriented architectures

Object-based style

Essence
Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a
network.

Object

Object

Object

Object

Object

Method call

State

Method

Interface

Encapsulation
Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

8 / 36

2. OBJECT-BASED ARCHITECTURES

• Each object is a component that
encapsulates data and methods

• They are connected through a well
defined remote API that hides internals

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why: components can be individually
scaled/developed/managed

Example: MapReduce, microservice
web architectures Object

Architectures: Architectural styles Object-based and service-oriented architectures

Object-based style

Essence
Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a
network.

Object

Object

Object

Object

Object

Method call

State

Method

Interface

Encapsulation
Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

8 / 36

3. DATA-CENTERED
ARCHITECTURES

• Main purpose: data access and
update

• Processes interact by reading and
modifying data in a centralized shared
repository

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why? Example?

3. DATA-CENTERED
ARCHITECTURES

• Main purpose: data access and
update

• Processes interact by reading and
modifying data in a centralized shared
repository

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why: simplifies data management
Example: Dropbox, Message board

systems, Email

4. EVENT-BASED ARCHITECTURES

• Communication via event
propagation
• Publish-subscribe
• Broadcast
• Point-to-point

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why? Example?

4. EVENT-BASED ARCHITECTURES

• Communication via event
propagation
• Publish-subscribe
• Broadcast
• Point-to-point

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Why: decouples sender/receiver,
asynchronous

Example: Slack, Security monitoring

ARCHITECTURAL STYLES

1. Layered architectures
2. Object-based architectures
3. Data-centered architectures
4. Event-based architectures

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Each style constrains how we will build
the system. Following a style makes

development and extensibility easier.

But sometimes we need a hybrid style!

SYSTEM CHARACTERISTICS

• Centralized: A single component/subsystem is “in charge”
• Vertical (or hierarchical) organization of communication and control paths
• Logical separation of functions into client (requester) and server (responder)

• Decentralized: multiple components/subsystems interact as peers
• Horizontal rather than hierarchical communication and control
• Communication paths may be less structured; symmetric functionality

• Hybrid: combine elements of both

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Classification of a system as centralized or decentralized
primarily refers to communication and control

organization

VERTICAL VS HORIZONTAL

• Vertical: Layers with different
functionality. Restricted
communication

• Horizontal: Components with similar
functionality or more diverse
communication

Prof. Tim Wood & Prof. Roozbeh Haghnazar

TRADITIONAL CLIENT-SERVER

• Processes are divided into two groups (clients and servers).
• Synchronous communication: request-reply protocol

• Could be message oriented or RPC

• Note: even in this simple example, lots could go wrong!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLIENT ARCHITECTURE

• Server provides processing and data management; client
provides simple graphical display (thin-client)
• Pro: Easier to manage, more reliable, client machines don’t need to

be so large and powerful
• Con: Potential performance loss at client

• At the other extreme, all application processing and some
data resides at the client (fat-client approach)
• Pro: reduces workload at server; more scalable
• Con: harder to manage by system admin, less secure

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERED SERVER EXAMPLE

• User-interface level: GUI’s (usually) for interacting with end users
• Processing level: data processing applications – the core functionality
• Data level: interacts with data base or file system

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Architectures: Architectural styles Layered architectures

Application Layering

Example: a simple search engine

Database
with Web pages

Query
generator

Ranking
algorithm

HTML
generator

User interface

Keyword expression

Database queries

Web page titles
with meta-information

Ranked list
of page titles

HTML page
containing list

Processing
level

User-interface
level

Data level

Application layering 7 / 36

TIERS, LAYERS, NODES, COMPONENTS

• Layer and tier are roughly equivalent terms, but layer typically implies software
and tier is more likely to refer to component deployment on HW.
• Several software layers might comprise a subsystem deployed as a single “tier” in a

multi-tier web application
• Components are generally software, whereas a node could refer to a

component deployed on a particular server

Layers / Components = Software
Tiers / Nodes = Software deployed on hardware

(usually*)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLIENT-SERVER
SPLIT

Can you come up with an
example service/application which
uses each of these architectures?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Server Machine

Client Machine

THREE-TIERED WEB
ARCHITECTURE

Tiers can be spread
across multiple servers

Simplifies deployment,
performance
management, reliability

Servers also can play the
role of client

Prof. Tim Wood & Prof. Roozbeh Haghnazar

“LAMP Stack” (Linux, Apache, MySQL,
PHP) was the 3-tier standard

DECENTRALIZED
ARCHITECTURES

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PEER TO PEER SYSTEMS

• A distributed system that does not rely on centralized coordination
• Peers are equipotent and work together to provide a service

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Centralized P2P

DECENTRALIZATION BENEFITS

• Centralized systems may have
a single point of failure
• Affects reliability and may be

a performance bottleneck

• Decentralization can make a
system more robust and
performant
• But only if it is well designed!

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Master/Leader node
coordinates followers

Peer-to-Peer system
can self-organize

P2P CHALLENGES

• Routing and Discovery
• How to reach other nodes?
• How to find out what other nodes exist?
• How to bootstrap when you first join?

• Consistency
• How to keep information consistent across the network?

• Reliability / Failure Handling
• What happens when nodes crash and rejoin?

• Performance
• How to get predictable performance with limited control?

P2P ARCHITECTURES

• The peers can be connected in a organized (structured) manner or in an ad-
hoc (unstructured) manner

• Why/When might you choose one over the other?
Figures from wikipedia

Structured Unstructured

BOOTSTRAPPING

• How can a node join a P2P network if there is no centralized server to
connect to?

Figures from wikipedia

Structured Unstructured

BOOTSTRAPPING

• Common Assumptions:
• New nodes have address of at least

one other active node
• Special peers store extra information

- New nodes can
broadcast on their radio
to find close neighbors

Structured Unstructured

GNUTELLA P2P FILE SHARING

• Peer-to-Peer file sharing service
• Released by a company owned by AOL on March 14, 2000
• AOL shut down the company the next day...

• Unstructured P2P system
• Bootstrap using pre-defined addresses of starter nodes
• Randomly pick a set of N neighbors (N=5)
• Search for files by querying neighbors
• Neighbors propagate searches up to H hops total (H=7)
• Responses travel back the same path

• Once file is found, transfer over direct connection

File I want

Me

GNUTELLA

• At most how many
neighbors will this search?
• 5 neighbors per node
• 7 hop max path

• This is a form of flooding

• What could make this
more efficient?

Figures from wikipedia

NOT ALL PEERS ARE EQUAL

• Gnutella v0.6 added Ultra Peers and Leaves
• Leaf Node:

• Connects to 3 Ultra Peers
• Maintains an index of all its content
• Send queries to Ultra Peer

• Ultra Peer:
• Connects to 32 Ultra Peers
• Forwards queries at most 4 hops (not 7)
• Merges the content indexes of all leaf nodes
• Shares content index with all adjacent Ultra Peers
• Only send to an Ultra peer on the 4th hop if query is in index

• How does this change things?

HOW TO PICK NEIGHBORS?

• Want to avoid disconnected components and weak connectivity between
groups!

• This is why some networks enforce
a structure or hierarchy

