
DISTRIBUTED SYSTEMS
CS6421

SCALABLE EXECUTION (CONTINUED)

Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

LAST TIME… MAP REDUCE
• Map Phase

• input: data element
• Convert input data into an intermediate result
• All map functions can be called independently in parallel
• output: {list of keys and values}

• Shuffle and partition
• Sort all outputs by key and combine values into a list
• Partition keys to create new Reduce tasks
• output: Key, {list of values}

• Reduce Phase
• input: Key, {list of values}
• Combine the list of values for each key to produce an output

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MAP REDUCE PARALLELISM?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Key Value
Welcome 1
Everyone 1
Hello 1
Everyone 1

Welcome Everyone

Hello Everyone

MAP PARALLELISM

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DFS
Blocks

Map
Tasks

Servers

Welcome Everyone

Hello Everyone

Key Value

Welcome 1

Everyone 1

Key Value

Hello 1

Everyone 1

?

REDUCE PARALLELISM

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Servers

Key Value Hash (SHA-1) %2

Welcome 1 92155f497508e89f4ce90969a330ad8c3b98b0e8 0
Everyone 1 c756f6af1f03c9ce381cb85934ffb274e2f54af3 1

Key Value Hash (SHA-1) %2

Hello 1 f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0 0
Everyone 1 c756f6af1f03c9ce381cb85934ffb274e2f54af3 1

Reduce #=Hash(Key)%Number of Reduce processors

Key Value

Everyone 2

Welcome 1

Hello 1

LAST TIME… PROCESSES & THREADS
• Processes
• Process means any program is in execution. Process control block

controls the operation of any process. Process control block
contains the information about processes for example: Process
priority, process id, process state, CPU, register etc. A process can
creates other processes which are known as Child Processes.
Process takes more time to terminate and it is isolated means it
does not share memory with any other process.
• Costly and heavy creation, modification and distortion procedure
• Process means any program is in execution.
• Process can block the other related processes

• Threads
• Thread is the segment of a process means a process can have

multiple threads and these multiple threads are contained within a
process. A thread have 3 states: running, ready, and blocked.
Thread takes less time to terminate as compared to process and
like process threads do not isolate.
• Easy and cheap creation and management
• Thread means segment of a process.
• Second thread in the same task could run, while one server thread is

blocked.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHERE DOES CODE ACTUALLY RUN?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERS AND LAYERS…

• In a “cloud”

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERS AND LAYERS…

• In a “cloud”
• In a data center

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERS AND LAYERS…

• In a “cloud”
• In a data center
• In a server

Prof. Tim Wood & Prof. Roozbeh Haghnazar

LAYERS AND LAYERS…

• In a “cloud”
• In a data center
• In a server
• In a Virtual Machine
• In an OS
• In a process

• In a thread

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Virtualization

Linux

WebServer

Linux

Database

CHALLENGES???
1. Heterogeneity
2. Openness
3. Security
4. Failure Handling
5. Concurrency
6. Quality of Service
7. Scalability
8. Transparency

Prof. Tim Wood & Prof. Roozbeh Haghnazar

• In a “cloud”
• In a data center
• In a server
• In a Virtual Machine
• In an OS
• In a process
• In a thread

CHALLENGES???
1. Heterogeneity
2. Openness
3. Security
4. Failure Handling
5. Concurrency
6. Quality of Service
7. Scalability
8. Transparency

Prof. Tim Wood & Prof. Roozbeh Haghnazar

• In a “cloud”
• In a data center
• In a server
• In a Virtual Machine
• In an OS
• In a process
• In a thread

WHAT IS VIRTUALIZATION?
• An extra interface that

mimics the behavior of
a lower layer
• Used since 1970s so

new mainframes could
support legacy
applications

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Firefox Office

Windows

OS SW
Interface

OS HW
Interface

TYPES OF VIRTUAL MACHINES

1. Application
Virtualization
• Runs application code
• Java VM, WINE

3. Paravirtualization
• Modify OS to simplify

hypervisor
• Xen

2. Hosted Virtualization
• Virtualizes a full OS

and apps
• VMware Player,

VirtualBox

4. Full Virtualization
• Runs directly on HW
• VMware ESXi

HOW TO VIRTUALIZE?
• Virtualization layer replaces an interface
• Must intercept calls and translate them

• Java - interpret/compile code to match host
• Hosted VM - translate system calls for host OS
• Full Virtualization - trap on sensitive instructions

• How to allocate resources?
• VMs must share memory and CPU time

• How to handle I/O?
• Abstraction layer separates VM from physical hardware

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHY VIRTUALIZE?
• Consolidation

• Can split a physical server into many smaller servers

• Security
• VMs are isolated from one another

• Resource management
• Can dynamically adjust a VM’s CPU and memory share

• Convenience
• VM is abstracted away from physical hardware
• Great for development

Prof. Tim Wood & Prof. Roozbeh Haghnazar

VMS IN CLOUD DATA CENTERS
• Virtualization is used to multiplex a physical server

• Allows multiple customers to share one machine
• Simplifies management since VMs are not strictly tied to HW
• Provides isolation between cloud users

VM VM VM VM VM

Cloud Data Center

OS + Apps

HypervisorHypervisor

More later!

AMAZON EC2
INFRASTRUCTURE AS A SERVICE

• Infrastructure as a Service Cloud (IaaS)

• Can rent server and storage resources

Prof. Tim Wood & Prof. Roozbeh Haghnazar

VM Type Description Cost

t3.Micro 1GB RAM, up to 1 core $0.01 / hour

t3.Large 8GB RAM, ~2 cores $0.08 / hour

c5.18xlarge 144GB RAM, 72 cores $3.06 / hour

WHAT ARE THE DOWNSIDES
OF VIRTUALMACHINES?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

VMS ARE “HEAVY”

• Each Virtual Machine needs to be allocated
resources

• RAM – 512MB for smallest VM on AWS
• CPU – switching between VMs is an expensive

context switch
• Full operating system may be redundant if many

VMs are similar

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ARE PROCESSES BETTER?
• Processes
• OS provides isolation

• Isolated:
• Memory

• Shared:
• File system
• Network
• Devices
• OS Kernel

MySQLApache

Linux

sshd

/etc/
/etc/apache2
/etc/sshd.conf
/etc/mysql
/usr/bin/mysqld
…

CONTAINERS
• Containers
• Namespace-based

isolation using LXC and
cgroups

• Isolated:
• Memory
• File system
• Network
• Devices

• Shared:
• OS Kernel

MySQLApache

Linux

sshd

/etc/apache2
/var/www/
…

/etc/mysql
/usr/bin/mysqld
/var/lib/mysql
…

/etc/mysql
/usr/bin/mysqld
/var/lib/mysql
…

CONTAINER PACKAGING
• Deployment - big benefit of containers/virtualization

• Lets you package up an application and all of its requirements
• Even the distribution and 3rd party utilities!
• Very helpful for system administrators

• Container “image” includes:
• Linux distribution base files
• Dependency libs/utils
• Configuration files
• Application to run

• Can inherit files/libraries from host to reduce size of the container package!

MySQL

SUSE

Apache

Ubuntu
hello

Fedora, Linux 4.8

CONTAINER VS VMS
25

VM 1

Kernel

IIS

Hypervisor

VM 2

Kernel

MySQL
MySQL
Fedora

Apache

Ubuntu

Fedora, Linux 4.8

hello

Containers
- ???

VMs
- ???

REGULAR ORGANIZATIONS
26

Hypervisor ex: ESXi

VM 1

OS Kernel

Container img
1

Container img n

Container Engine

App (Service) App (Service)

VM n

OS Kernel

Container img
1

Container img n

Container Engine

App (Service) App (Service)

YARN SCHEDULER

• There are some servers
• Containers run the jobs
• Application Masters control

and execute the tasks
• Node Manager can inform

the Resource Manager that
hey one task is done.

• Then RM, inform the AM who
has a task to get done.

• AM negotiate with NM to get
the task to the container to
get done.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED SYSTEMS
CS6421

COMMUNICATION
Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

CLIENT/SERVER MODEL

• Need a way to send data
• Need a way to find

destinations

• Need to share the network
• Need to handle failure or loss

Prof. Tim Wood & Prof. Roozbeh Haghnazar

ACCESSING A WEB PAGE
• How to load http://faculty.cs.gwu.edu/timwood/simple.html

Prof. Tim Wood & Prof. Roozbeh Haghnazar

http://faculty.cs.gwu.edu/timwood/simple.html

LAYERED OSI MODEL

• Application (+ presentation): <your code here>
• FTP, SMTP, HTTP

• Transport (+ session): data transfer
• TCP, UDP

• network: routing protocols
• IP

• link: adjacent nodes
• Ethernet, 802.111 (WiFi), PPP

• physical:
• bits on the wire or in the air

Prof. Tim Wood & Prof. Roozbeh Haghnazar

+ presentation

+ session

GET /timwood/simple.html HTTP/1.1
Host: faculty.cs.gwu.edu
(blank line)

faculty.cs.gwu.edu

HOW TO SPEAK WEBSITE? 32

telnet faculty.cs.gwu.edu 80

Me

HTTP/1.1 200 OK
Server: GitHub.com
Content-Type: text/html; charset=utf-8
Last-Modified: Thu, 17 Sep 2020 19:26:33 GMT
ETag: "5f63b869-b6"
Access-Control-Allow-Origin: *
Expires: Thu, 17 Sep 2020 19:56:47 GMT
…

+ presentation

+ session

SOFTWARE LAYERS

• Network Interface Card (NIC)
• Reads “bytes on wire”

• Driver
• Moves data from NIC to main memory

• Internet Protocol (IP)
• Handles addressing and routing

• Transmission Control Protocol (TCP)
• Ensures reliable, ordered transmission of packets

and manages congestion
• Socket

• Provides interface between OS and App

33

IP

TCP

Driver

Socket

NIC

Application

O
S

Ke
rn

el

SOCKETS

34

IP

TCP

Driver

Socket

NIC

Client

O
S

Ke
rn

el
IP

TCP

Driver

Socket

NIC

Server

O
S

Ke
rn

el

Magic! Magic
Tubes!

More
Magic!

ABSTRACTIONS

• Networking (and all CS) is about abstraction layers!
• We don’t need to know how something works if we understand its inputs and

outputs

• …but we do need to understand the guarantees that lower abstraction
layers are providing!

35

TCP Socket TCP SocketReliable Tube

UDP Socket UDP SocketUnreliable Tube

SOCKETS

• Socket
• Connect
• Bind, Listen, Accept

• Send, Receive
• Close

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Communication: Message-oriented communication Simple transient messaging with sockets

Transient messaging: sockets

Berkeley socket interface
Operation Description

socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending

connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection

connect

socket

socket

bind listen receive

receive

send

send

accept close

close

Server

Client

Synchronization point Communication

20 / 49

MESSAGE BASED PROTOCOLS
• Server waits for client to send a message
• Client sends a message
• Server unpacks message, processes it, packs a new message, returns it

• Many message protocols are text based
• HTTP, FTP, SMTP, IRC

• Others are binary-based
• HTTP/2,

• Benefit? Drawback?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

REMOTE PROCEDURE CALLS
• RPC is a layer of abstraction built on top of

sockets exchanging messages

• Synchronous
• Client waits for result
• Often run in a thread/goroutine!
• (Async variants exist in some languages)

• RPC layer handles packaging and sending
data needed to process function

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on separate
machine

Conclusion
Communication between caller & callee
can be hidden by using procedure-call
mechanism.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

12 / 49

RPC IMPLEMENTATION

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Implementation
of doit

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process

1. Client call to
procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to “doit”

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
r = a,bdoit() r = a,bdoit()

proc: “doit”
type1: val(a)

type2: val(b)

proc: “doit”
type1: val(a)

type2: val(b)

proc: “doit”
type1: val(a)

type2: val(b)

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters; calls

server.

6 Server does local call; returns result to stub.
7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result; returns to client.

13 / 49

RPC CHALLENGES
• Client and server machines may have different data representations (think of

byte ordering)
• Wrapping a parameter means transforming a value into a sequence of bytes
• Client and server have to agree on the same encoding:

• How are basic data values represented (integers, floats, characters)
• How are complex data values represented (arrays, unions)

• Client and server need to properly interpret messages, transforming them
into machine-dependent representations.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

RPC IN GO

• Go RPC package: https://golang.org/pkg/net/rpc/

• Exported methods must follow this template:

• T1 is a struct for input arguments, T2 is for reply. Both must support marshalling

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Package rpc provides access to the exported methods of an object across a
network or other I/O connection. A server registers an object, making it visible as a
service with the name of the type of the object. After registration, exported
methods of the object will be accessible remotely. A server may register multiple
objects (services) of different types but it is an error to register multiple objects of
the same type.

func (t *T) MethodName(args T1, reply *T2) error

https://golang.org/pkg/net/rpc/

COMMUNICATION + EXECUTION
• Execution in…

• Processes, threads, VMs, containers
• Communicating via…

• Sockets, RPC, message queues, publish/subscribe, multicast

• These combine to form Distributed Systems

Prof. Tim Wood & Prof. Roozbeh Haghnazar

“A distributed system is a collection of
independent computers that appears to its users

as a single coherent system.”

