
DISTRIBUTED SYSTEMS
CS6421

EXECUTION ENVIRONMENTS
Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

CLOUD COMPUTING VS DISTRIBUTED
COMPUTING

• Distributed computing is the use of distributed systems to solve single large
problems by distributing tasks to single computers in the distributing systems.
On the other hand, cloud computing is the use of network hosted servers to
do several tasks like storage, process and management of data.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLOUD COMPUTING
VS DISTRIBUTED
COMPUTING
• Figure (a) is a schematic view of a

typical distributed system; the system is
represented as a network topology in
which each node is a computer and
each line connecting the nodes is a
communication link.

• Figure (b) shows the same distributed
system in more detail: each computer
has its own local memory, and
information can be exchanged only
by passing messages from one node
to another by using the available
communication links.

• Figure (c) shows a parallel system in
which each processor has a direct
access to a shared memory.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CLOUD COMPUTING VS
DISTRIBUTED COMPUTING
• Cloud computing usually refers to providing a service

via the internet. This service can be pretty much
anything, from business software that is accessed via
the web to off-site storage or computing resources
whereas distributed computing means splitting a large
problem to have the group of computers work on it at
the same time.
• YouTube is the best example of cloud storage which

hosts millions of user uploaded video files.
• Picasa and Flickr host millions of digital photographs

allowing their users to create photo albums online by
uploading pictures to their service’s servers.

• Google Docs is another best example of cloud
computing that allows users to upload presentations,
word documents and spreadsheets to their data servers.
Google Docs allows users edit files and publish their
documents for other users to read or make edits.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Image Credit: imscindiana.com

Image Credit :researchgate.net

CLOUD COMPUTING VS DISTRIBUTED
COMPUTING

• The goal of Distributed Computing is to provide collaborative resource
sharing by connecting users and resources. Distributed Computing strives to
provide administrative scalability (number of domains in administration), size
scalability (number of processes and users), and geographical scalability
(maximum distance between the nodes in the distributed system).

• Cloud Computing is all about delivering services or applications in on
demand environment with targeted goals of achieving increased scalability
and transparency, security, monitoring and management.In cloud
computing systems, services are delivered with transparency not considering
the physical implementation within the Cloud.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MAP REDUCE CASE STUDY
Prof. Tim Wood & Prof. Roozbeh Haghnazar

A REAL EXAMPLE
• There is a 300MB Text Document and we need to count the frequency of each

word.
• Desired Output:

Hello 390
Your 200
Vacation 930
U.S.A 190
Europe 100
Africa 150

Prof. Tim Wood & Prof. Roozbeh Haghnazar

A REAL EXAMPLE
• Map Reduce / Hadoop is a great example to solve this problem
• Hadoop is an open source version developed by Yahoo and others
• Goal: Make it easy to use a cluster for large scale data processing tasks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHAT IS MAP REDUCE?
• Map square ‘(1 2 3 4)

• Output is : (1 4 9 16)
• [Process each record sequentially and independently]

• Reduce + ‘(1 4 9 16)
• Output is : 30
• [Process set of all records in batches]

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MAP

• Process individual records to generate intermediate KEY/VALUE pairs
• Parallelly process a large number of individual records

Key Value
Welcome 1
Everyone 1
Hello 1
Everyone 1

Welcome Everyone

Hello Everyone

Parallel
Map Task

Prof. Tim Wood & Prof. Roozbeh Haghnazar

REDUCE
• Processes and merges all intermediate values associated per key

Key Value
Welcome 1
Everyone 1
Hello 1
Everyone 1

Key Value
Everyone 2
Welcome 1
Hello 1

Prof. Tim Wood & Prof. Roozbeh Haghnazar

REDUCE
• Each key assigned to one Reduce task
• Parallelly Processes and merges all intermediate values by partitioning keys

• Usually we can use hash partitioning technique:
• Reduce #=Hash(Key)%Number of Reduce processors

Key Value
Welcome 1
Everyone 1
Hello 1
Everyone 1

Key Value
Everyone 2
Welcome 1
Hello 1

Reduce
Task 1

Reduce
Task 2

Prof. Tim Wood & Prof. Roozbeh Haghnazar

INTERNAL WORKING OF MAP-REDUCE

DFS
Blocks

Map
Tasks

Servers Reduce
Tasks

Servers DFS
Blocks

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MAP/REDUCE PHASES
• Map Phase

• input: data element
• Convert input data into an intermediate result
• All map functions can be called independently in parallel
• output: {list of keys and values}

• Shuffle and partition
• Sort all outputs by key and combine values into a list
• Partition keys to create new Reduce tasks
• output: Key, {list of values}

• Reduce Phase
• input: Key, {list of values}
• Combine the list of values for each key to produce an output

Prof. Tim Wood & Prof. Roozbeh Haghnazar

YARN SCHEDULER
• Yet another Resource Negotiator
• Treat each server as a collection of containers

• Container is a set of some processors and memory
• 3 main components:

• Global Resource manager (RM) -> Scheduling
• Per-Server Node manage (NM)
• Per-application (job) Application Master (AM)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

YARN SCHEDULER

• There are some servers

• Containers run the jobs

• Application Masters control
and execute the tasks

• Node Manager can inform
the Resource Manager that
hey one task is done.

• Then RM, inform the AM who
has a task to get done.

• AM negotiate with NM to get
the task to the container to
get done.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

DISTRIBUTED SYSTEM ARCHITECTURE

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CHALLENGES
• Heterogeneity
• Openness
• Security
• Failure Handling
• Concurrency
• Quality of Service
• Scalability
• Transparency

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PITFALLS
• Peter Deutsch at Sun Microsystems, formulated these mistakes as the

following false assumptions that everyone makes when developing a
distributed application for the first time:

1. The network is reliable
2. The network is secure
3. The network is homogeneous
4. The topology does not change
5. Latency is zero
6. Bandwidth is infinite
7. Transport cost is zero
8. There is one administrator

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BUILDING BLOCKS
Processes, Threads, VMs....

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHAT IS A PROCESS

• “A program in execution”.
• In computing, a process is the instance of a computer program that is

being executed by one or many threads. It contains the program code
and its activity. Depending on the operating system, a process may be
made up of multiple threads of execution that execute instructions
concurrently.

• Traditional operating systems: concerned with the “local” management
and scheduling of processes.

• Modern distributed systems: a number of other issues are of equal
importance.

• There are three main areas of study:
1. Threads and virtualization within clients/servers
2. Process and code migration
3. Software agents

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THREADS
• Modern OSs provide “virtual processors” within which programs execute.
• A programs execution environment is documented in the process table and

assigned
a PID.

• To achieve acceptable performance in distributed systems, relying on the
OS’s idea
of a process is often not enough – finer granularity is required.

• The solution: Threading.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PROBLEMS WITH PROCESSES
• Creating and managing processes is generally

regarded as an expensive task (fork system call).
• Making sure all the processes peacefully co-exist on the system is not

easy (as concurrency transparency comes at a price).
• Threads can be thought of as an “execution of a part of a program (in

user-space)”.
• Rather than make the OS responsible for concurrency transparency, it

is left to the individual application to manage the creation and
scheduling of each thread.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

CHALLENGES AND TRADE-OFFS
• Heterogeneity
• Openness
• Security
• Failure Handling
• Concurrency
• Quality of Service
• Scalability
• Transparency

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Processes vs Threads?

IMPORTANT IMPLICATIONS
• Two Important Implications:

1. Threaded applications often run faster than non-threaded applications (as
context-switches between kernel and user-space are avoided).

2. Threaded applications are harder to develop (although simple, clean designs
can help here).

• Additionally, the assumption is that the development environment
provides a
Threads Library for developers to use
(most modern environments do).

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THREAD USAGE IN NON-DISTRIBUTED
SYSTEMS

• Blocking can be avoided
• Excellent support for multi-

processor systems (each
running their own thread).

• Expensive context-
switches can be avoided.

• For certain classes of
application, the design
and implementation is
made considerably easier. Context switching as the result of IPC

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THREAD IMPLEMENTATION
• User Level

• Cheap to create and destroy threads
• Switching Context can often be done in just few instructions
• Only drawback is that invocation of a blocking system call will immediately

block the entire process
• Kernel Level

• Every thread operation will have to be carried out by the Kernel, requiring system
call

• Switching thread context become as expensive as switching process context
• Most of the performance benefit of using threads instead of process then

disappears

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SINGLE THREAD
• Ex: when a user wants to change a

number in a cell, the process of
application block the process to
calculate the chain of formulas
(dependent cells) in the sheet and
then update the result and then the
user can change another value

User SpreadSheet Program

User Change a Value in a Cell Calculation
Update the result

Response

loop

Cell values

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Bl
o
c
ke
d

MULTI THREAD
• Ex: Based on the last example, in

this multi thread design approach,
we assigned each task to a thread
to make asynchronous activities

User SpreadSheet Program

User Change a Value in a Cell

W
rite on the file

Response()
&

Ready()

Thr1 (Urs Intraction)

New Thread()
Ready()

Thr2(Calculation)

New Thread()
Ready() Thr3(backup)

New Thread()
Ready()

OS File System

Cell Value Changing
Update Sharing Space

triger formula

Cell Value Changing
Update the dependent Cell

Backup
Call sys func to write

Saved
Saved

alt

Independent cell
has been changed

Calculated cell
is changed

Backup

W
rite on the file

Call sys func to write

Saved
Saved

Saving Notification

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Bl
o
c
ke
d

MULTI THREAD
• Ex: This is another approach to

assign each user action and its
following required procedures to
one thread

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THREAD IMPLEMENTATION

• Hybrid form
• Lightweight processes (LWP)
• LWP runs in a context of

single process and there
can be several LWP per
single process

Prof. Tim Wood & Prof. Roozbeh Haghnazar

THREADS IN DISTRIBUTED SYSTEMS

• Important characteristic: a blocking call in a (kernel-based) thread does not
result in the entire process being blocked.

• This leads to the key characteristic of threads within distributed systems:
• “We can now express communications in the form of maintaining multiple

logical connections at the same time (as opposed to a single, sequential,
blocking process).”

Prof. Tim Wood & Prof. Roozbeh Haghnazar

EXAMPLE: MT CLIENTS AND SERVERS

• Mutli-Threaded Client: to achieve acceptable levels of perceived
performance, it is often necessary to hide communications latencies.

• Consequently, a requirement exists to start communications while doing
something else.

• Example: modern Web browsers.
• This leads to the notion of “truly parallel streams of data” arriving at a multi-

threaded client application.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

EXAMPLE: MT-SERVERS

• Although threading is useful on clients, it is much more useful in distributed
systems servers.

• The main idea is to exploit parallelism to attain high performance.
• A typical design is to organize the server as a single “dispatcher” with

multiple threaded “workers”, as diagrammed overleaf.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MULTITHREADED SERVER

• Dispatcher can find a suitable
thread to serve client.

• Dispatcher transfer requests to
proper worker thread

A multithreaded server organized
in a dispatcher/worker model

Prof. Tim Wood & Prof. Roozbeh Haghnazar

AWS DEMO

Prof. Tim Wood & Prof. Roozbeh Haghnazar

