
DISTRIBUTED SYSTEMS
CS6421

CLOUD APPLICATION
ARCHITECTURES

Prof. Tim Wood and Prof. Roozbeh Haghnazar

Includes material adapted from Van Steen and Tanenbaum’s Distributed Systems book

LAST TIME… THIS TIME…
• Performance in Dist. Systems

• Introduction
• Performance metrics
• Models

• Cloud Application Architectures
• IaaS vs PaaS
• Multi-Tier
• Microservices
• Serverless
• Big Data
• Machine Learning

Prof. Tim Wood & Prof. Roozbeh Haghnazar

AMAZON’S CLOUD
• Amazon built its cloud platform so that other people could pay for its

infrastructure during the rest of the year…
• Only needed peak capacity during Christmas!

• Now its cloud users
are far bigger than
its own sites

3

TYPES OF CLOUD SERVICES
• Infrastructure as a Service (IaaS)

• Rent VMs, Containers, physical
servers, disks, etc. by the hour

• Examples: EC2, EBS, S3

• Benefits?
• Limitations?

• Other options: Function as a
Service, Software as a Service,
Resource as a Service…

• Platform as a Service (PaaS)
• Cloud provides a software layer on

top of its resources
• Exposes a programming API for

users to develop cloud-based apps
• Cloud provider manages all

underlying resources (autoscaling)
• Examples: Beanstalk, Lambda, EMR

• Benefits?
• Limitations?

MULTI-TIER APPLICATIONS

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MULTI-TIER WEB APPLICATIONS
• Traditionally composed of 3 components
• Separation of duties:

• Front-end web server for static content (Apache, lighttpd, nginx)
• Application (API) tier for dynamic logic (PHP, Tomcat, node.js)
• Database back-end holds state (MySQL, MongoDB, Postgres)

• Why divide up in this way?

6

Apache Node.js MySQL

STATEFUL VS STATELESS
• The multi-tier architecture is based largely around whether a tier needs to

worry about state
• Front-end - totally stateless

• There is no data that must be maintained by the server to handle subsequent
requests

• Application tier - maintains per-connection state
• There is some temporary data related to each user, e.g., my shopping cart
• May not be critical for reliability - might just store in memory

• Database tier - global state
• Maintains the global data that application tier might need
• Persists state and ensures it is consistent

7

N-TIER WEB APPLICATIONS
• Sometimes 3 tiers isn’t quite right
• Database is often a bottleneck

• Add a cache! (stateful, but not persistent)
• Authentication or other security services could be another tier
• Video transcoding, upload processing, etc

8

nginx
Node.js

MySQL

memcached

Apache+
PHP

REPLICATED N-TIER
• Replicate the portions of the system that are likely to become overloaded
• How easy to scale…?

• Apache serving static content
• Tomcat Java application managing user shopping carts
• MySQL cluster storing products and completed orders

9

Apache Node.js MySQLApacheApache MySQL

Tune number of replicas based on demand at each tier

MULTI-LAYERED
APPLICATION
An example of UML model diagram
representing a model of a layered
application, based on the Microsoft
Application Achitecture Guide, 2nd Ed.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

MULTI-LAYERED WEB
ARCHITECTURE
UML PACKAGE DIAGRAM
EXAMPLE
Dependencies between packages are
created in such a way as to avoid circular
dependencies between packages.

Higher level packages depend on lower
level packages.

Packages belonging to the same level
could depend on each other. Data
transfer objects and common exceptions
are used by packages at higher levels.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

JAVA™ SERVLET
3.0 API
The first step can be Package Diagram
UML 2.5 doesn’t have standard
stereotype to support modeling of APIs

Java Servlet 3.0 API consists of four
packages:
•javax.servlet,
•javax.servlet.http,
•javax.servlet.annotation, and
•javax.servlet.descriptor.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SPRING AND HIBERNATE
CLASSES
UML PACKAGE DIAGRAM
EXAMPLE
Support packages for object relational
mappers comply with Spring's generic
transaction and DAO exception
hierarchies.

Spring framework hibernate3 packages
use several Hibernate packages.

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PLANTUML
@startuml
left to right direction
skinparam packageStyle rectangle
actor customer
actor clerk
rectangle checkout {
customer -- (checkout)
(checkout) .> (payment) : include
(help) .> (checkout) : extends
(checkout) -- clerk

}
@enduml

Prof. Tim Wood & Prof. Roozbeh Haghnazar

https://plantuml.com/use-case-diagram

PLATFORM AS A SERVICE

Prof. Tim Wood & Prof. Roozbeh Haghnazar

WHAT IS PAAS?
• PaaS is a framework for developers to create fully-customized applications

with limited management responsibilities in the cloud.
• Platform and environment to allow developers to build applications and

services
• Simply accessible via their web browser

Prof. Tim Wood & Prof. Roozbeh Haghnazar

Front App Data

HOW DOES IT WORK?
• This is important for enterprise businesses seeking agility as they implement a

DevOps approach to software development.
• The bottom line is that Paas requires fewer management responsibilities,

allowing for greater focus to be placed on development.
• Creation of Software Applications
• Pay-per-use
• Choice of features
• Management and support
• Automatic upgrades

Prof. Tim Wood & Prof. Roozbeh Haghnazar

BENEFITS TO APPLICATION DEVELOPERS

• No investment in physical infrastructure
• Make development possible for ‘non-experts’
• Flexibility & Adaptability
• Teams in various location can work together
• Security

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PAAS IN AZURE

Prof. Tim Wood & Prof. Roozbeh Haghnazar

PAAS IN AZURE
• Web Apps
• Mobile Apps
• Logic Apps
• Functions
• Web Jobs

Prof. Tim Wood & Prof. Roozbeh Haghnazar

APPLICATION TIER
Monolithic vs Microservices

Prof. Tim Wood & Prof. Roozbeh Haghnazar

APPLICATION TIER 22

Problems with
Monolithic
approach?

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

MONOLITHIC CHALLENGES
• Scalability: Need to possibly use both up and out to reach

performance goals. Hard to scale things like databases.
• Reliability: A fault/memory leak in a single place can crash the

entire app.
• Orchestration: You need to rebuild and deploy the entire application

every time you make a change.
• Code Complexity: Code turns into spaghetti due to too many things

happening at once. Hard to refactor features.
• Upgradeability: Moving to newer tech stacks requires converting

the entire app at once.

23

MICROSERVICES
• Take your application

API and split it into
smaller components
based on function.

24

Monolithic API

Authentication API

API Gateway

Data Cleaning API

Data Persistence API

Business Logic API

API’s are then distributed
across many machines
and communicate using
HTTP

API Gateway

Auth API

Logic API Cleaning
API

Persistence API MYSQL

MICROSERVICES 25

Read more: https://martinfowler.com/articles/microservices.html

MICROSERVICES 26

Read more: https://martinfowler.com/articles/microservices.html

Challenges with
Microservices

approach?

MICROSERVICES CHALLENGES

• Discovery: how to find a service you want?

• Scalability: how to replicate services for speed?

• Openness: how to agree on a message protocol?

• Fault tolerance: how to handle failed services?

27

All distributed systems face these challenges, microservices just
increases the scale and diversity…

NETFLIX
• 20th most popular website according to Alexa
• Zero of their own servers

• All infrastructure is on AWS (2016-2018)
• Recently starting to build out their own Content Delivery Network

28

NETFLIX
• One of the first to really push

microservices
• Known for their DevOps
• Fast paced, frequent updates,

must always be available
• 700+ microservices
• Deployed across

10,000s of VMs and
containers

29

Netflix tech talk: https://www.youtube.com/watch?v=CZ3wIuvmHeM

NETFLIX “DEATHSTAR”
• Microservice architecture

results in a extremely
distributed application
• Can be very difficult to

manage and understand
how it is working at scale

• What if there are failures?
• How to know if everything is

working correctly?

30

NETFLIX CHAOS MONKEY

• Idea: If my system can handle failures,
then I don’t need to know exactly how
all the pieces themselves interact!

• Chaos Monkey:
• Randomly terminate VMs and containers

in the production environment
• Ensure that the overall system keeps

operating
• Run this 24/7

31

Make failures the common
case, not an unknown!http://principlesofchaos.org/

MICROSERVICE ARCHITECTURE MODELING WITH DOMAIN
DRIVEN DESIGN

Prof. Tim Wood & Prof. Roozbeh Haghnazar

https://www.umlzone.com/videos/modeling-microservices-with-domain-driven-design/

SERVERLESS COMPUTING

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SERVERLESS COMPUTING
• Trendy architecture that improves the agility of microservices
• What does “serverless” mean?

34

AWS Lambda

SERVERLESS COMPUTING (FAAS)
• Trendy architecture that improves the agility of

microservices
• What does “serverless” mean?

• You still need a server!
• BUT, your services will not always be running

• Key idea: only instantiate a service when a
user makes a request for that functionality;
charge the cloud customer based on number
of requests

• How will this work for stateful vs stateless
services?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

USAGE EXAMPLES OF SERVERLESS

• IoT (Weather stations)

• Data processing
(Image Manipulation)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

USAGE EXAMPLES OF SERVERLESS

• Web Application
(Weather stations)

• Chatbots (Event-
Driven Architecture
for chatbot)

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SERVERLESS IN AZURE

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

39

FaaS

No workload means no resources being used!

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

40

FaaS

C1

Request arrives, start green container

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

41

FaaS

C1

Reuse that container for subsequent requests

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

42

FaaS

C1

FaaS

C1
API

Gateway

Add more replicas if workload exceeds capacity

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

43

FaaS

C1 C2

Start new container if user needs a different function

SERVERLESS STARTUP
• Function as a Service platfoms (Lambda, GCF, Azure Functions, etc)

• Define a stateless “function” to execute for each request
• A container will be instantiated to handle the first request
• The same container will be used until it times out or is killed

44

FaaS

C2

Stop old containers once not in use

SERVERLESS PROS/CONS
• Benefits:

• Simple for developer when auto scaling up
• Pay for exactly what we use (at second granularity)
• Efficient use of resources (auto scale up and down based on requests)
• don’t worry about reliability/server management at all

• Drawbacks:
• Limited functionality (stateless, limited programming model)
• High latency for first request to each container
• Some container layer overheads plus the lambda gateway and routing overheads
• Potentially higher and unpredictable costs
• Difficult to debug / monitor behavior
• Security

45

SERVERLESS VS PAAS?

Prof. Tim Wood & Prof. Roozbeh Haghnazar

SERVERLESS DEMO

Prof. Tim Wood & Prof. Roozbeh Haghnazar

