
DISTRIBUTED SYSTEMS
CS6421

INTRO TO DISTRIBUTED SYSTEMS
AND THE CLOUD

Prof. Tim Wood and Prof. Roozbeh Haghnazar

PROF. TIM WOOD

• Research: Virtualization
platform design, cloud
resource
management, and
software-based
networking

• Teaching: Distributed
Systems, Networking,
Software Engineering,
Senior Design

PROF. ROOZBEH HAGHNAZAR

• Started Programming in1991 with Commodore
64

• Played several roles in technology, such as
Developer, Modeler, Designer, Architect,
Leader, CTO, etc.

• Teach Software Eng., Distributed Systems, Data
Base Design Principles, Data Visualization,
Operating System.

GRADERS/HELPERS

• Huadong Hu and Guodong Xie
• Introduce yourselves!

• Will grade your assignments and be available for help sessions / Q&A
• They are the Go experts!

ABOUT THIS COURSE

• Be prepared! (course prerequisites)
• CSci 6212 Algorithms (or undergrad algorithms course)
• An undergraduate operating systems course

• Be involved!
• “Raise hand”, write questions in chat, post on Slack, etc.
• Asynchronous opportunities will be available

• Be ready to code!
• You will need to use Go for your assignments
• Mostly group projects

ONLINE CLASSES

• 2.5 hours is a long time for virtual lectures!
• We will try to break it up – discussions, demos, live coding
• Some lectures may end early, with additional asynchronous material

• We want to make the best course we can for you!
• But this is a new way of teaching and we appreciate your understanding

• Please attend class “live” if you can
• Recordings will be posted after class if you cannot attend

PARTICIPATE!
• You must “participate” 2X per week:

• Attend lecture or office hours
• Post a question/comment/answer on BB/Slack (during or outside of class)

• Examples:
• Attend both lecture and office hours = 2 points J
• Attend office hours and ask a question = 2 points J
• Post 3 questions = 2 points J
• Only attend lecture = 1 point L

• You get one week off for free (see syllabus for grading details)

RESOURCES

• Website: https://gwdistsys20.github.io/
• See syllabus for full details!

• Slack: (linked from website, join after class)
• GitHub for collecting assignments
• Blackboard for grades, class meetings, and office hours

• Visual Studio Code – recommended IDE
• Live share plugin allows group collaboration / help in office hours

• Repl.it – simple online editor for quick programming exercises
• You can login with GitHub credentials if you want to save copies

https://gwdistsys20.github.io/

SEMESTER OUTLINE
• Building Blocks

• Introduction to Distributed System and Cloud
• Scalable Execution: Processes, threads, VMs, containers, parallelism vs

concurrency
• Communication: RPC, Message Oriented, Stream Oriented

• Principles of Distributed Systems
• Coordination: Synchronization, Consistency, and Consensus
• Reliability: Replication and Fault Tolerance
• Performance: Metrics and Modeling Large Scale Systems

• Distributed Systems in Practice
• Grid Computing
• Cloud Computing
• Web, Mobile, and IoT

4 Go programming assignments
Midterm

Large group project

INTRODUCTION
• Computer systems are undergoing revolution.
• Two advances in technology changed the game

• 8bit -> 16bit -> 32bit -> 64bit microprocessors
• From a machine that cost $10M and executed 1 inst./sec

we have come to machine that cost $1000 and execute
1 billion inst./sec

• Computer networks LAN/WAN
• From 64 Kbit/sec to Gigabit/Sec

INTRODUCTION
• If we had this progress and

improvement in cars industries:
• A Rolls Royce would cost 1

dollar and get a billion miles
per gallon.

WHAT IS THE CLOUD?

WHAT IS THE CLOUD

• Giant warehouses
• 10s of thousands of servers
• Petabytes of storage
• 10s of thousands of

Processor cores
• ….Interconnected….

WHY INFRASTRUCTURE?
• Why do we need this amount of infrastructures?

• Encyclopedia Britannica
• - 40,000+ articles
• - 32 hard bound volumes (32,640 pages)

• Wikipedia
• - 5,512,202 articles (in English)
• - More than 5 TB of text (about 7,500 CDs)
• -More than 2000 volumes

AND THEN BIG DATA

• Why do we need this amount of infrastructures?
• Airbus A350

• Contains around 6000 sensors across the entire plane that generates 2.5TB Data per day

• Airbus A380-100
• Expected to take the skies in 2020
• Contains 10000 sensors just in each wings

• Facebook
• 20 TB photos each week

• Google
• 20000TB Data processing per day in 2008

AND THEN BIG DATA

• Google Search Statistics
The average figure of how many people use Google a
day, which translates into at least 2 trillion searches per
year, 3.8 million searches per minute, 228 million
searches per hour, and 5.6 billion searches per day.

• How much data do we generate?
According to the Forbes statistics:

• 2.5 quintillion bytes of data created each day
• Over the last two years alone 90 percent of the data in

the world was generated.

HISTORY OF CLOUD COMPUTING

HISTORY OF CLOUD COMPUTING

WHAT’S NEW

• There are four new features in the new generation of distributed and cloud
systems:
• Massive Scale
• On-Demand Access: Pay-as-you-go
• Data Intensive Nature: MBs became PBs and XBs
• New Cloud Programming Paradigms: Map/Reduce Hadoop, Unstructured Data

*AAS CLASSIFICATION

• HaaS : Hardware as a Service
Hardware and backbone

• IaaS: Infrastructure as a Service
AWS, Azure, GCP

• Paas: Platform as a Service
Google App engine, AWS Elastic Beanstalk

• SaaS: Software as a Service
Google Doc, Dropbox

CLOUD IS A …
• Cloud vs Distributed System vs Cluster

• Client Server Architecture

CLOUD IS A …
• Can we say “ Cloud is a fancy word for a Distributed System?”

WHAT IS A DISTRIBUTED SYSTEM

• A distributed system is a collection of independent computers that appears
to its users as a single coherent system. [Andrew Tanenbaum]
• distributed system consists of components that are autonomous
• users (be they people or programs) think they are dealing with a single system.

(Transparency)
• distributed systems should also be relatively easy to expand or scale.
• Heterogeneity
• Concurrency

GOALS OF DS
• Making resources accessible
• Distribution Transparency

• Access
• Location
• Migration
• Relocation
• Replication
• Concurrency
• Failure

• Openness
• Scalability

ACCESSIBILITY

• The main goal of a distributed system is to make it easy for the users and
applications to access remote resources and to share them in a controlled
and efficient way

TRANSPARENCY

• Transparency in simple words is defined as the concealment from the user
and the application programmer of the separation of components in
a distributed system, so that the system is perceived as a whole rather than
as a collection of independent components.

OPENNESS

• An open distributed system is a system that offers services according to
standard rules that describe the syntax and semantics of those services.

SCALABILITY

• Scalability means you can increase or reduce the capacity, power or
abilities of your system. It can be measured along at least three different
dimensions:
• A system can be scalable with respect to its size (add more users/resources to

the system – can be consider as Scale up)
• A geographically scalable system is one in which the users may lie far apart

(Scale out)
• A system can be administratively scalable. It means that it can still be easy to

manage even if it spans many independent administrative organizations.

CONCURRENCY VS PARALLELISM

• Concurrency considers the checkpoints

• Parallelism considers time of progresses

Parallel Concurrent

PROCESS

• Process
• Stack
• Program Counter
• Heap
• Etc.

Main()

F1()

F2()

DISTRIBUTED ….
• Distributed System = Many Processes ?????

P1 P2 P3 P4 …….. Pn

Reliable or Unreliable Communication

HOW CAN WE HANDLE?
• Faster Computer Or Add Another Computer?

Computer2Computer2Computer2Computer2Computer1

Distributed System Layer

P1 P3 P4P2

BREAKOUT

• I will send you to Breakout rooms
• Mini video chat rooms with ~5 people each

1. Introduce yourselves:
• Who are you? Where are you? What do you want to learn from this course?

2. Answer these questions as a group:
• What is something you learned from the lecture so far?
• What is a part of the lecture was confusing to you?

• Back to normal lecture in ~6 minutes!

HW 1: GO PARALLEL SUM

PARALLEL SUM

• Assignment Goals:
• Learn the basics of the Go programming language
• Familiarize yourself with the editing environment and Git
• Build two types of distributed systems

• This is an individual assignment
• You must write all your own code
• You may discuss general ideas with other students and link them help

documentation
• You may give general advice for debugging and design, but you should never

have your code open while looking at someone else’s code!
• This is more lenient than many classes, don’t abuse it!

WHY GO?
• Go has become a very popular language for building distributed systems
• Born at Google by Robert Griesemer, Rob Pike and Ken Thompson (C/Unix)
• Power and performance of C, but with the convenience and safety of more

modern languages

• Learn more: https://golang.org/doc/faq

“Go … [attempted] to combine the ease of programming of an
interpreted, dynamically typed language with the efficiency and
safety of a statically typed, compiled language. It also aimed to

be modern, with support for networked and multicore computing.”

https://golang.org/doc/faq

PHASE 1: SEQUENTIAL SUM

• Starter code:
• Reads a file and puts numbers in an array

• Your code:
• Use a for loop and add up the numbers
• Add command line parameter support
• (this should be easy even if you’ve never

touched go)

• Hint: Take a tour of Go
• https://tour.golang.org/list

https://repl.it/@twood02/gofor

https://tour.golang.org/list
https://repl.it/@twood02/gofor

PHASE 2: PARALLEL SUM

• Main thread still reads in file and makes
array (see starter code)

• Use Goroutines to parallelize the addition
• A Goroutine is a lightweight thread
• What does this mean with regards to

concurrency and parallelism?

• How will the main thread and goroutines
coordinate?
• Need to pass numbers to be summed
• Need to get back the result
• Hint: learn about Go Channels!

https://repl.it/@twood02/goroutines

https://repl.it/@twood02/goroutines

PHASE 3: HTTP+RPC
• Let’s make a “real” distributed

system! Two Go programs:
• HTTP Frontend

• Accepts a client request
specifying file to process

• RPC Backend
• Receives a Remote Procedure

Call from frontend to trigger
the summation

• Uses goroutines to parallelize
like in prior phase

HTTP
Front

RPC
Back

Client

Parallel
sum

