DISTRIBUTED SYSTEMS
CS642]
INTRO TO DISTRIBUTED SYSTEMS
AND THE CLOUD

Prof. Tim Wood and Prof. Roozbeh Haghnazar

« Research: Virtualization
platform design, cloud
resource
management, and
software-based
networking

« Teaching: Distributed
Systems, Networking,
Software Engineering,
Senior Design

PROF. ROOZBEH HAGHNAZAR

« Started Programming in1991 with Commodore
64

» Played several roles in technology, such as
Developer, Modeler, Designer, Architect,
Leader, CTO, etc.

« Teach Software Eng., Distributed Systems, Data
Base Design Principles, Data Visualization,
Operating System.

« Huadong Hu and Guodong Xie
* Infroduce yourselves!

« Will grade your assignments and be available for help sessions / Q&A
* They are the Go experts!

ABOUT THIS COURSE

* Be prepored! (course prerequisites)
« CSci 6212 Algorithms (or undergrad algorithms course)
* An undergraduate operating systems course

* Be involved!
« “Raise hand”, write questions in chat, post on Slack, etc.
« Asynchronous opportunities will be available

* Be ready tfo codel
* You will need to use Go for your assignments
* Mostly group projects

ONLINE CLASSES

« 2.5 hours is a long time for virtual lectures!
 We will try to break it up — discussions, demos, live coding
« Some lectures may end early, with additional asynchronous material

« We want to make the best course we can for youl!
« But this is a new way of teaching and we appreciate your understanding

« Please attend class “live” if you can
« Recordings will be posted after class if you cannot attend

PARTICIPATE!

* You must “participate” 2X per week:
« Atftend lecture or office hours
« Post a question/comment/answer on BB/Slack (during or outside of class)

« Examples:
« Attend both lecture and office hours = 2 points ©
« Attend office hours and ask a question = 2 points ©
« Post 3 questions = 2 points ©
« Only attend lecture = 1 point ®

* You get one week off for free (see syllabus for grading details)

RESOURCES

« Website: https://gwdistsys20.qgithub.io/
« See syllabus for full details!

 Slack: (linked from website, join after class)

GitHub for collecting assignments

Blackboard for grades, class meetings, and office hours

Visual Studio Code —recommended IDE
« Live share plugin allows group collaboration / help in office hours

Repl.it — simple online editor for quick programming exercises
* You can login with GitHub credentials if you want to save copies

https://gwdistsys20.github.io/

SEMESTER OUTLINE

 Building Blocks
» Introduction to Distributed System and Cloud

« Scalable Execution: Processes, threads, VMs, containers, parallelism vs
concurrency

« Communication: RPC, Message Oriented, Stream Oriented

* Principles of Distributed Systems
« Coordination: Synchronization, Consistency, and Consensus
« Reliability: Replication and Fault Tolerance
« Performance: Metrics and Modeling Large Scale Systems

 Distributed Systems in Practice

» Grid Compuhng 4 Go programming assignments
» Cloud Computing Midterm

« Web, Mobile, and loT Large group project

History of Computers

INTRODUCTION

« Computer systems are undergoing revolution.

+ Two advances in technology changed the game

« 8bit -> 16bit -> 32bit -> 64bit microprocessors

From a machine that cost $10M and executed 1 inst./sec
we have come to machine that cost $1000 and execute
1 billion inst./sec

» Computer networks LAN/WAN
From 64 Kbit/sec to Gigabit/Sec

Timeline and Ordering Activities

IBM PC le Lisa :intosh ‘'iMAC

INTRODUCTION

« If we had this progress and
improvement in cars industries:

* A Rolls Royce would cost 1
dollar and get a billion miles
per gallon.

H I mm&____.

Ll _:..:_::_._:_:_:::..:.._:..:. MivT AU ALY

N

. A

e

~l~_f

. _. .. _. kT o
._.*.*____,,.,_ A il _.?.-r 15 8

PA. - o 4

ewn s

Giant warehouses

10s of thousands of servers

Petabytes of storage

10s of thousands of
Processor cores

....Infterconnected....

WHAT IS THE CLOUD

Gravelines

ﬁ%x2

Beauharnois London Roubaix

ﬁ% Y% E\% X1 @ X7

Paris o — Uil
e —2-—9Q @ x1

= =

Strasbourg Frankfurt

@xE @ X1

Vint Hill

@)d

27 DATACENTERS WORLDWIDE

\f# OVH

« Why do we need this amount of infrastructuress

= e ==
SEM ElE
: [~AEE E f2{=
EEEEEEEIEIZIELE £(2
EEEEEERF 5] |2
. = = e B R TR | c
sl B EGELE G s
5 . = “_,....',_4.'&
| i U i
AREaETToT

« Encyclopedia Britannica
* - 40,000+ articles) AEE3IS3TITIE
« - 32 hard bound volumes (32,640 pages) A | 6 p

- -5,512,202 articles (in English)
- -More than 5 TB of text (about 7,500 CDs)
« -More than 2000 volumes %

« Wikipedia @' Q L -

AND THEN BIG DATA

« Why do we need this amount of infrastructurese

« Airbus A350
« Contains around 6000 sensors across the entire plane that g

« Airbus A380-100
» Expected to take the skies in 2020
« Contains 10000 sensors just in each wings

« Facebook
« 20 TB photos each week

« Google
« 20000TB Data processing per day in 2008

AND THEN BIG DATA

« Google Search Statistics

The average figure of how many people use Google a
day, which translates into at least 2 frillion searches per
year, 3.8 million searches per minute, 228 million
searches per hour, and 5.6 billion searches per day.

« How much data do we generate?

According to the Forbes statistics:
« 2.5 quintillion bytes of data created each day

« QOver the last two years alone 90 percent of the data in
the world was generated.

KB
MB
GB
B
PB
EB

Kilo Byte
Mega Byte
Giga Byte
Tera Byte
Peta Byte
Exa Byte

1 thousand bytes
1 million bytes

1 billion bytes

1 trillion bytes

1 quadrillion bytes
1 quintillion bytes

Evolution of cloud
B computing.

Parallel

omputing . web
2.0~
enabled
PCs,
TVs, etc.

A Computing =S

-1968:$70M. 1 cloud % . Ubiquitous
Timesharing Ind : oy .

& somputin
sMarket Share: CompUtmg - 9

*Xerox 10%. CD
*Honevwell 600(
Xerox 940 & S

Busines

«[TR ses,

from
startups
to
enterpri
ses

Cloud computing

HISTORY OF CLOUD COMPUTING

s |nfrastructure-as-a Service
*Platform-as-a-Service
*Software-as-a-Service

Utility computing

*Metered bandwidth
*Self-service provisioning
*Rapid scalability

*Distributed processing

G I"i d com p utl n g *Commodotized hardware
*Massively parallel processing
Ce nt ra |ized *Mainframe computers
. *"Dumb" terminals
ComPUtlng *Time-sharing

WHAT'S NEW

« There are four new features in the new generation of distributed and cloud
systems:

* Massive Scale

« On-Demand Access. Pay-as-you-go

« Data Intensive Nature: MBs became PBs and XBs

* New Cloud Programming Paradigms: Map/Reduce Hadoop, Unstructured Data

*aaS CLASSIFICATION

HaasS : Hardware as a Service
Hardware and backbone

laasS: Infrastructure as a Service
AWS, Azure, GCP

Paas: Platform as a Service

Google App engine, AWS Elastic Beanstalk
SaasS: Software as a Service
Google Doc, Dropbox

CLOUD IS A ...

» Cloud vs Distributed System vs Cluster

External External Extarnal
connaction connaction connaction
Stretched Stretched
management cluster management cluster g::':?ement
Availability Zone 1 Availability Zone 2 (4 ESXi hosts)
. . {4 ESXi hosts) {4 ESXi hosts)
« Client Server Architecture
Stretched shared Stretched shared
adge and edge and
compute cluster compute cluster E:'%:&:ddmﬂ
Availability Zone 1 Availability Zone 2 (4 ESXi hosts)
(4 ESXi hosts) (4 ESXi hosts)
|
Availability Zone 1 Availability Zone 2
| 1
Region A Region B

CLOUD IS A ...

« Canwe say " Cloud is a fancy word for a Distributed System®e”

WHAT IS A DISTRIBUTED SYSTEM

« A distributed system is a collection of independent computers that appears
to its users as a single coherent system. [Andrew Tanenbaum]

« distributed system consists of components that are autonomous

users (be they people or programs) think they are dealing with a single system.
(Transparency)

distributed systems should also be relatively easy to expand or scale.
Heterogeneity
Concurrency

GOALS OF DS

« Making resources accessible

 Distribution Transparency
« Access
« Location
« Migration
« Relocation
« Replication
« Concurrency
» Failure

« Openness
« Scalability

ACCESSIBILITY

« The main goal of a distributed system is to make it easy for the users and
applications to access remote resources and to share them in a conftrolled
and efficient way

TRANSPARENCY

* Transparency in simple words is defined as the concealment from the user
and the application programmer of the separation of components in
a distributed system, so that the system is perceived as a whole rather than
as a collection of independent components.

OPENNESS

« An open distributed system is a system that offers services according to
standard rules that describe the syntax and semantics of those services.

SCALABILITY

 Scalability means you can increase or reduce the capacity, power or

abilities of your system. It can be measured along at least three different
dimensions:

« A system can be scalable with respect to its size (add more users/resources to
the system — can be consider as Scale up)

« A geographically scalable system is one in which the users may lie far apart
(Scale out)

« A system can be administratively scalable. It means that it can still be easy to
manage even if it spans many independent administrative organizations.

TN

CONCURRENCY VS PARALLELISM

Parallel Concurrent

CPU2

« Concurrency considers the checkpoints

« Parallelism considers time of progresses

PROCESS

Process

Stack

Program Counter
Heap

Etc.

~ AVAILABLE
STACK
SPACE

Reliable or Unreliable Communication

HOW CAN WE HANDLE?

» Faster Computer Or Add Another Computer?

Distributed System Layer

N T

BREAKOUT

* | will send you to Breakout rooms
* Mini video chat rooms with ~5 people each

1. Infroduce yourselves:
« Who are you?e Where are you? What do you want to learn from this course<¢

2. Answer these questions as a group:
« What is something you learned from the lecture so far?
« Whatis a part of the lecture was confusing to you?e

« Back to normal lecture in ~6 minutes!

PARALLEL SUM

« Assignment Goals:
* Learn the basics of the Go programming language
« Familiarize yourself with the editing environment and Git
« Build two types of distributed systems

 This is an individual assignment
* You must write all your own code

* You may discuss general ideas with other students and link them help
documentation

* You may give general advice for debugging and design, but you should never
have your code open while looking at someone else’s codel

 This is more lenient than many classes, don’'t abuse it!

WHY GO¢

Go has become a very popular language for building distributed systems
Born at Google by Robert Griesemer, Rob Pike and Ken Thompson (C/Unix)

Power and performance of C, but with the convenience and safety of more
modern languages

Learn more: hitps://golang.org/doc/fag

“Go ... [attempted] to combine the ease of programming of an
iInterpreted, dynamically typed language with the efficiency and

safety of a stafically typed, compiled language. It also aimed to
be modern, with support for networked and multicore computing.”

https://golang.org/doc/faq

PHASE 1: SEQUENTIAL SUM

o S_I_ C”,_I_ er co d e: 0@ <] | @ htps://repl.it/@twood02/gofor] ¢ th j 3

« Reads a file and puts numbers in an array @ ooz jpoor W v > +
* Your code: e T °

- Use a for loop and add up the numbers — et 1

« Add command line parameter support s e 3

* (this should be easy even if you've never Z fune say(s string) £ !

touched go) E }fmt.prin;ﬂ--%s s, s, 1)
P

e Hint: Take a tour of Go 1 | saycile®

e https://tour.golang.org/list e

hitps://repl.it/@twood02/gofor

https://tour.golang.org/list
https://repl.it/@twood02/gofor

PHASE 2: PARALLEL SUM

« Main thread still reads in file and makes DA [(I =N
array (see starter code) @ ooz poroutnes B v o b
« Use Goroutines to parallelize the addition mne [ol oo buita
° . . . 1 package main ./main
« A Goroutine is a lightweight thread R o
- What does this mean with regards to | e wort
concurrency and parallelism? s) o
« How will the main thread and goroutines o or i ot ess e ort
. 10 time.Sleep(100 * time.Millisecond) hello
coordinate? 11 ft.printings)
12 }
 Need to pass numbers to be summed s}
 Need to get back the result o T
« Hint: learn about Go Channels! L Syhetien
? 19 |

https://repl.it/@twood02/goroutines

https://repl.it/@twood02/goroutines

PHASE 3: HTTP+RPC

« Let’'s make a “real” distributed
system! Two Go programes:

« HTTP Frontend
« Accepts a client request
specifying file to process
« RPC Backend Client

 Receives a Remote Procedure
Call from frontend to trigger
the summation

» Uses goroutines to parallelize
like in prior phase

/ I\

Parallel
sum

